{"title":"Strong Coupling between Moiré-Type Plasmons and Phonons in Suspended Monolayer Metallic Twisted Superlattices","authors":"Bin You, Yuhan Du, Shuangxiu Yuan, Yuan Tian, Xianghao Meng, Wenbin Wu, Zeping Shi, Guangyi Wang, Xin Chen, Xiang Yuan, Xiaolong Zhu","doi":"10.1021/acs.nanolett.4c04841","DOIUrl":null,"url":null,"abstract":"We demonstrate both experimentally and analytically a strong coupling phenomenon between moiré-type plasmons and phonons within moiré superlattices. We study the dependence of moiré wave vector and the twist angle and numerically simulate and experimentally fabricate metallic moiré superlattices on a suspended thin film SiO<sub>2</sub> substrate at different twist angles. The results suggest that the coupling strength initially increases and then decreases with increasing twist angles. When the twist angle is at 16.26°, we achieve a moiré-type plasmon-phonon strong coupling with a Rabi splitting strength approaching 45 meV. We further analyze the coupling system by utilizing the coupled-harmonic-oscillators theory and quantum mechanical theory. The calculations and numerical simulations further agree with the experimental results. The proposed strong coupling system has the potential to contribute substantially to electromagnetic field controlling and coupling.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"14 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04841","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate both experimentally and analytically a strong coupling phenomenon between moiré-type plasmons and phonons within moiré superlattices. We study the dependence of moiré wave vector and the twist angle and numerically simulate and experimentally fabricate metallic moiré superlattices on a suspended thin film SiO2 substrate at different twist angles. The results suggest that the coupling strength initially increases and then decreases with increasing twist angles. When the twist angle is at 16.26°, we achieve a moiré-type plasmon-phonon strong coupling with a Rabi splitting strength approaching 45 meV. We further analyze the coupling system by utilizing the coupled-harmonic-oscillators theory and quantum mechanical theory. The calculations and numerical simulations further agree with the experimental results. The proposed strong coupling system has the potential to contribute substantially to electromagnetic field controlling and coupling.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.