Jie Gao, Dong Zhong, Dan Zheng, Muhammad Akbar, Kun Chen, Cong Jiang, Yuanjing Meng, Baoyuan Wang
{"title":"Excellent electrolyte functionality of Sm-doped La2O3 wide band gap semiconductor for low temperature solid oxide fuel cells","authors":"Jie Gao, Dong Zhong, Dan Zheng, Muhammad Akbar, Kun Chen, Cong Jiang, Yuanjing Meng, Baoyuan Wang","doi":"10.1016/j.jallcom.2024.177699","DOIUrl":null,"url":null,"abstract":"Sluggish ionic conductivity of electrolyte material at low operational temperature creates challenges in the commercialization of low-temperature solid oxide fuel cells (LT-SOFCs). It is imperative to develop promising electrolyte along with excellent ionic conductivity to realize the decent output power at low temperature. The present study proposes a wide band gap semiconductor samarium doped lanthanum oxide (SLO), and its electrolyte functionality was evaluated in LT-SOFCs. The SOFC based on SLO electrolyte achieved promising performance of 977<!-- --> <!-- -->mW<!-- --> <!-- -->cm<sup>-2</sup> along with high open circuit voltage of 1.02<!-- --> <!-- -->V at 550 ℃. Sm doping in lanthanum significantly decrease the grain boundary resistance in the SLO electrolyte. Conductivity tests show that SLO possess both proton and oxygen ion conductivities, and which are significantly improved after Sm doping. Furthermore, on performing durability test the cell persistently get stable for 20<!-- --> <!-- -->hours. This work demonstrates the potential of SLO as a high-performance electrolyte for LT-SOFCs.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"23 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177699","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sluggish ionic conductivity of electrolyte material at low operational temperature creates challenges in the commercialization of low-temperature solid oxide fuel cells (LT-SOFCs). It is imperative to develop promising electrolyte along with excellent ionic conductivity to realize the decent output power at low temperature. The present study proposes a wide band gap semiconductor samarium doped lanthanum oxide (SLO), and its electrolyte functionality was evaluated in LT-SOFCs. The SOFC based on SLO electrolyte achieved promising performance of 977 mW cm-2 along with high open circuit voltage of 1.02 V at 550 ℃. Sm doping in lanthanum significantly decrease the grain boundary resistance in the SLO electrolyte. Conductivity tests show that SLO possess both proton and oxygen ion conductivities, and which are significantly improved after Sm doping. Furthermore, on performing durability test the cell persistently get stable for 20 hours. This work demonstrates the potential of SLO as a high-performance electrolyte for LT-SOFCs.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.