Single-Atom Pt Anchored Polyoxometalate as Electron-Proton Shuttle for Efficient Photoreduction of CO2 to CH4 Catalyzed by NiCo Layered Doubled Hydroxide

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-11-20 DOI:10.1002/smll.202410343
Ailin Cai, Guicong Hu, Wei Chen, Sai An, Bo Qi, Yu-Fei Song
{"title":"Single-Atom Pt Anchored Polyoxometalate as Electron-Proton Shuttle for Efficient Photoreduction of CO2 to CH4 Catalyzed by NiCo Layered Doubled Hydroxide","authors":"Ailin Cai, Guicong Hu, Wei Chen, Sai An, Bo Qi, Yu-Fei Song","doi":"10.1002/smll.202410343","DOIUrl":null,"url":null,"abstract":"The crucial role of active hydrogen (H*) in photocatalytic CO<sub>2</sub> methanation has long been overlooked, although recently, accelerating proton-coupled electron transfer (PCET) processes to enhance CH<sub>4</sub> productivity and selectivity has garnered significant attention. Herein, a single-atom Pt-anchored H<sub>3</sub>PMo<sub>12</sub>O<sub>40</sub> (Pt<sub>1</sub>-PMo<sub>12</sub>) is applied as an efficient proton–electron shuttle to facilitate the photocatalytic performance of NiCo layered double hydroxide (NiCo-LDH). The resultant Pt<sub>1</sub>-PMo<sub>12</sub>@NiCo-LDH exhibited superior CH<sub>4</sub> productivity (723 µmol g<sup>−1</sup> h<sup>−1</sup>) with CH<sub>4</sub> selectivity of 82.3%, showcasing a 24.9 times productivity enhancement over NiCo-LDH (29 µmol g<sup>−1</sup> h<sup>−1</sup>). Systematic investigations revealed that abundant H* is generated by the dissociation of H<sub>2</sub>O on Pt<sub>1</sub> sites and stored within Pt<sub>1</sub>-PMo<sub>12</sub>. Subsequently, the multiple H* rapidly migrated from Pt<sub>1</sub>-PMo<sub>12</sub> to the catalytic sites on NiCo-LDH by the engineered strong Mo─O─Ni/Co bonds, thereby significantly expediting the PCET process. The in situ DRIFTS and theoretical calculations elucidated that the Pt<sub>1</sub>-PMo<sub>12</sub> decreased the energy barrier for *CO protonation to *CHO (0.38–0.18 eV) and optimized the rate-determining step of *CH<sub>3</sub> to *CH<sub>4</sub> (0.64 eV), thus promoting highly active and selective CH<sub>4</sub> generation. This work provided novel insights into achieving efficient photocatalytic CO<sub>2</sub> methanation by modulating the fast generation and transport of active H*.","PeriodicalId":228,"journal":{"name":"Small","volume":"81 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202410343","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The crucial role of active hydrogen (H*) in photocatalytic CO2 methanation has long been overlooked, although recently, accelerating proton-coupled electron transfer (PCET) processes to enhance CH4 productivity and selectivity has garnered significant attention. Herein, a single-atom Pt-anchored H3PMo12O40 (Pt1-PMo12) is applied as an efficient proton–electron shuttle to facilitate the photocatalytic performance of NiCo layered double hydroxide (NiCo-LDH). The resultant Pt1-PMo12@NiCo-LDH exhibited superior CH4 productivity (723 µmol g−1 h−1) with CH4 selectivity of 82.3%, showcasing a 24.9 times productivity enhancement over NiCo-LDH (29 µmol g−1 h−1). Systematic investigations revealed that abundant H* is generated by the dissociation of H2O on Pt1 sites and stored within Pt1-PMo12. Subsequently, the multiple H* rapidly migrated from Pt1-PMo12 to the catalytic sites on NiCo-LDH by the engineered strong Mo─O─Ni/Co bonds, thereby significantly expediting the PCET process. The in situ DRIFTS and theoretical calculations elucidated that the Pt1-PMo12 decreased the energy barrier for *CO protonation to *CHO (0.38–0.18 eV) and optimized the rate-determining step of *CH3 to *CH4 (0.64 eV), thus promoting highly active and selective CH4 generation. This work provided novel insights into achieving efficient photocatalytic CO2 methanation by modulating the fast generation and transport of active H*.

Abstract Image

单原子铂锚定聚氧化金属酸盐作为电子质子穿梭器,在镍钴层状双氢氧化物催化下将 CO2 高效光还原为 CH4
长期以来,活性氢(H*)在光催化二氧化碳甲烷化过程中的关键作用一直被忽视,不过最近,加速质子耦合电子传递(PCET)过程以提高 CH4 产率和选择性已引起人们的极大关注。在本文中,单原子铂锚定 H3PMo12O40(Pt1-PMo12)被用作一种高效的质子-电子穿梭器,以促进镍钴层状双氢氧化物(NiCo-LDH)的光催化性能。结果表明,Pt1-PMo12@NiCo-LDH 具有卓越的 CH4 产率(723 µmol g-1 h-1)和 82.3% 的 CH4 选择性,比 NiCo-LDH(29 µmol g-1 h-1)的产率提高了 24.9 倍。系统研究表明,Pt1 位点上的 H2O 解离产生大量 H*,并储存在 Pt1-PMo12 内。随后,多重 H* 通过设计的 Mo─O─Ni/Co 强键迅速从 Pt1-PMo12 迁移到 NiCo-LDH 的催化位点,从而大大加快了 PCET 过程。原位 DRIFTS 和理论计算阐明,Pt1-PMo12 降低了 *CO 质子化到 *CHO 的能垒(0.38-0.18 eV),优化了 *CH3 到 *CH4 的速率决定步骤(0.64 eV),从而促进了高活性、高选择性的 CH4 生成。这项工作为通过调节活性 H* 的快速生成和传输实现高效光催化 CO2 甲烷化提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信