{"title":"Bimetallic PdPt nanoparticles incorporated PEDOT:PSS/Guar gum blended membranes for enhanced CO2 separation","authors":"Nishel Saini, Gaurav Pandey, Ankit Sharma, Kamakshi Pandey, Kamlendra Awasthi","doi":"10.1039/d4nr03292f","DOIUrl":null,"url":null,"abstract":"To address the escalating demand for efficient CO2 separation technologies, we introduce novel membranes utilizing natural polymer guar gum (GG), conjugate polymer PEDOT:PSS, and bimetallic PdPt nanoparticles for efficient CO2 separation. Bimetallic PdPt nanoparticles were synthesized using the wet chemical method and characterized using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques. The fabricated membranes were characterized using various techniques for their morphology, chemical bonds, functional groups, and mechanical properties. Through meticulous fabrication and characterization, the binary blended membranes demonstrated enhanced homogeneity and smoothness in the structure, attributed to the interaction between the polymers; and superior CO2 permeability due to the amphiphilic nature of PEDOT:PSS polymer. The gas separation experiments using H2, N2, and CO2 gases, confirmed that the 20% PEDOT:PSS/GG blended membranes showed the highest performance with sufficient mechanical properties. Moreover, the results demonstrated an increment of 172% in CO2 permeability and 138% in CO2/H2 selectivity, respectively. Further, integrating bimetallic PdPt nanoparticles provided an additional 197% increment in CO2/H2 selectivity, owing to the unique catalytic activities of noble metal nanoparticles. The study not only underscores the transformative potential of polymer blending and noble metal engineering but also highlights the significance of using natural polymers towards sustainable environmental solutions.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"10 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr03292f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To address the escalating demand for efficient CO2 separation technologies, we introduce novel membranes utilizing natural polymer guar gum (GG), conjugate polymer PEDOT:PSS, and bimetallic PdPt nanoparticles for efficient CO2 separation. Bimetallic PdPt nanoparticles were synthesized using the wet chemical method and characterized using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques. The fabricated membranes were characterized using various techniques for their morphology, chemical bonds, functional groups, and mechanical properties. Through meticulous fabrication and characterization, the binary blended membranes demonstrated enhanced homogeneity and smoothness in the structure, attributed to the interaction between the polymers; and superior CO2 permeability due to the amphiphilic nature of PEDOT:PSS polymer. The gas separation experiments using H2, N2, and CO2 gases, confirmed that the 20% PEDOT:PSS/GG blended membranes showed the highest performance with sufficient mechanical properties. Moreover, the results demonstrated an increment of 172% in CO2 permeability and 138% in CO2/H2 selectivity, respectively. Further, integrating bimetallic PdPt nanoparticles provided an additional 197% increment in CO2/H2 selectivity, owing to the unique catalytic activities of noble metal nanoparticles. The study not only underscores the transformative potential of polymer blending and noble metal engineering but also highlights the significance of using natural polymers towards sustainable environmental solutions.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.