Defect management and crystallization regulation for high-efficiency carbon-based printable mesoscopic perovskite solar cells via a single organic small molecule

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jinjiang Wang, Dongjie Wang, Dang Xu, Yang Zhang, Tianhuan Huang, Doudou Zhang, Zheling Zhang, Jian Xiong, Yu Huang, Jian Zhang
{"title":"Defect management and crystallization regulation for high-efficiency carbon-based printable mesoscopic perovskite solar cells via a single organic small molecule","authors":"Jinjiang Wang, Dongjie Wang, Dang Xu, Yang Zhang, Tianhuan Huang, Doudou Zhang, Zheling Zhang, Jian Xiong, Yu Huang, Jian Zhang","doi":"10.1039/d4ta06877g","DOIUrl":null,"url":null,"abstract":"High-quality perovskite films are crucial for achieving efficient carbon-based printable mesoscopic perovskite solar cells (MPSCs). However, rapid crystallization leads to poor film quality and the formation of defects, resulting in severe non-radiative recombination that hinders the improvement of device performance. In this work, an organic small molecule, dicyandiamide (DCDA), with multifunctional groups was incorporated into the perovskite precursor solution to concurrently regulate crystallization and manage defects in the perovskite in the mesoporous scaffold, and high performance MPSCs were obtained. Due to the robust interactions of the –C<img alt=\"[double bond, length as m-dash]\" border=\"0\" src=\"https://www.rsc.org/images/entities/char_e001.gif\"/>N and –CN groups in DCDA with un-coordinated Pb<small><sup>2+</sup></small>, and/or FA<small><sup>+</sup></small>/MA<small><sup>+</sup></small> <em>via</em> hydrogen bonding, coupled with the –NH<small><sub>2</sub></small> groups of DCDA forming hydrogen bonding or electrostatic interactions with halide anions to inhibit ion migration, the defects were passivated. The introduction of DCDA effectively retarded nucleation and grain growth, and significantly reduced the film formation rate. Thus, perovskite films with larger grain sizes, preferred orientation, and lower trap state density were obtained, thereby greatly suppressing non-radiative recombination. As a result, the average power conversion efficiency (PCE) of MPSCs treated with DCDA was improved from 17.15 ± 0.48% to 18.75 ± 0.42%, and a champion PCE of 19.12% was obtained. Meanwhile, the PCE of unpackaged MPSC devices still remained at 94.00% of the initial efficiency when stored in an air environment after 103 days, demonstrating excellent stability. The strategy facilitates a deeper understanding of perovskite crystallization in printable MPSCs.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"11 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta06877g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-quality perovskite films are crucial for achieving efficient carbon-based printable mesoscopic perovskite solar cells (MPSCs). However, rapid crystallization leads to poor film quality and the formation of defects, resulting in severe non-radiative recombination that hinders the improvement of device performance. In this work, an organic small molecule, dicyandiamide (DCDA), with multifunctional groups was incorporated into the perovskite precursor solution to concurrently regulate crystallization and manage defects in the perovskite in the mesoporous scaffold, and high performance MPSCs were obtained. Due to the robust interactions of the –CAbstract ImageN and –CN groups in DCDA with un-coordinated Pb2+, and/or FA+/MA+ via hydrogen bonding, coupled with the –NH2 groups of DCDA forming hydrogen bonding or electrostatic interactions with halide anions to inhibit ion migration, the defects were passivated. The introduction of DCDA effectively retarded nucleation and grain growth, and significantly reduced the film formation rate. Thus, perovskite films with larger grain sizes, preferred orientation, and lower trap state density were obtained, thereby greatly suppressing non-radiative recombination. As a result, the average power conversion efficiency (PCE) of MPSCs treated with DCDA was improved from 17.15 ± 0.48% to 18.75 ± 0.42%, and a champion PCE of 19.12% was obtained. Meanwhile, the PCE of unpackaged MPSC devices still remained at 94.00% of the initial efficiency when stored in an air environment after 103 days, demonstrating excellent stability. The strategy facilitates a deeper understanding of perovskite crystallization in printable MPSCs.

Abstract Image

通过单一有机小分子实现高效碳基可印刷介观过氧化物太阳能电池的缺陷管理和结晶调节
高质量的过氧化物薄膜对于实现高效的碳基可印刷介观过氧化物太阳能电池(MPSC)至关重要。然而,快速结晶会导致薄膜质量差和缺陷的形成,从而造成严重的非辐射重组,阻碍器件性能的提高。在这项工作中,一种带有多功能基团的有机小分子双氰胺(DCDA)被加入到过氧化物前驱体溶液中,以同时调节结晶和管理介孔支架中过氧化物的缺陷,并获得了高性能的 MPSC。由于 DCDA 中的 -CN 和 -CN 基团通过氢键与未配位的 Pb2+、和/或 FA+/MA+ 发生强有力的相互作用,再加上 DCDA 中的 -NH2 基团与卤化物阴离子形成氢键或静电作用以抑制离子迁移,从而使缺陷被钝化。DCDA 的引入有效地延缓了成核和晶粒的生长,并显著降低了成膜率。因此,获得了晶粒尺寸更大、取向更优、陷阱态密度更低的包晶石薄膜,从而大大抑制了非辐射重组。因此,经 DCDA 处理的 MPSC 的平均功率转换效率(PCE)从 17.15 ± 0.48% 提高到 18.75 ± 0.42%,冠军 PCE 为 19.12%。同时,未包装的 MPSC 器件在空气环境中存放 103 天后,其 PCE 仍保持在初始效率的 94.00%,显示出极佳的稳定性。该策略有助于加深对可印刷 MPSC 中包晶石结晶的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信