Buried Interface Modification Toward Efficient CsPbI2.2Br0.8 Based Monolithic Perovskite/Organic Tandem Solar Cells

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-11-20 DOI:10.1002/smll.202406824
Xin-Yi Li, Zhuxia Wu, Qin Yao, Lu-Yao Chen, Wang Zeng, Qi Sun, Francis R. Lin, Alex K.-Y. Jen, Tingting Shi, Hin-Lap Yip, Yue-Min Xie, Man-Keung Fung
{"title":"Buried Interface Modification Toward Efficient CsPbI2.2Br0.8 Based Monolithic Perovskite/Organic Tandem Solar Cells","authors":"Xin-Yi Li, Zhuxia Wu, Qin Yao, Lu-Yao Chen, Wang Zeng, Qi Sun, Francis R. Lin, Alex K.-Y. Jen, Tingting Shi, Hin-Lap Yip, Yue-Min Xie, Man-Keung Fung","doi":"10.1002/smll.202406824","DOIUrl":null,"url":null,"abstract":"Wide-bandgap perovskite sub-cells (WPSCs), one of the most crucial components of perovskite-based tandem solar cells (PTSCs), play a critical role in determining the performance of tandem devices. However, confined by the compromised crystallization properties of wide-bandgap perovskites, WPSCs exhibit significantly lower efficiency than their theoretical limit. In particular, for n-i-p structured all-inorganic WPSCs (AIWPSCs), severe nonradiative recombination due to the buried interface defects severely decreases the photovoltaic performance. Herein, an efficient propionate group (PA<sup>−</sup>) based ionic liquid, methylamine propionate (MAPA), is introduced into the perovskite/electron-transport layer (ETL) interface to passivate the buried interface of AIWPSCs. The intense interaction between the PA<sup>−</sup> and Pb–Pb dimer effectively heals the defects at the buried interface and facilitates a more homogeneous elemental distribution in the perovskite film. As a result, CsPbI<sub>2.2</sub>Br<sub>0.8</sub>-based AIWPSCs with a high power conversion efficiency (PCE) of 18.29% and open-circuit voltage (<i>V</i><sub>OC</sub>) of 1.33 V are obtained, which illustrates the superiority of MAPA in optimizing the performance of AIWPSCs. Moreover, by integrating these AIWPSCs with small-bandgap organic solar cells (SOSCs), high performance n-i-p structured all-inorganic perovskite/organic tandem solar cells (AIPOTSCs) with a high PCE of 23.19% and <i>V</i><sub>OC</sub> of 2.08 V are also achieved.","PeriodicalId":228,"journal":{"name":"Small","volume":"14 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202406824","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Wide-bandgap perovskite sub-cells (WPSCs), one of the most crucial components of perovskite-based tandem solar cells (PTSCs), play a critical role in determining the performance of tandem devices. However, confined by the compromised crystallization properties of wide-bandgap perovskites, WPSCs exhibit significantly lower efficiency than their theoretical limit. In particular, for n-i-p structured all-inorganic WPSCs (AIWPSCs), severe nonradiative recombination due to the buried interface defects severely decreases the photovoltaic performance. Herein, an efficient propionate group (PA) based ionic liquid, methylamine propionate (MAPA), is introduced into the perovskite/electron-transport layer (ETL) interface to passivate the buried interface of AIWPSCs. The intense interaction between the PA and Pb–Pb dimer effectively heals the defects at the buried interface and facilitates a more homogeneous elemental distribution in the perovskite film. As a result, CsPbI2.2Br0.8-based AIWPSCs with a high power conversion efficiency (PCE) of 18.29% and open-circuit voltage (VOC) of 1.33 V are obtained, which illustrates the superiority of MAPA in optimizing the performance of AIWPSCs. Moreover, by integrating these AIWPSCs with small-bandgap organic solar cells (SOSCs), high performance n-i-p structured all-inorganic perovskite/organic tandem solar cells (AIPOTSCs) with a high PCE of 23.19% and VOC of 2.08 V are also achieved.

Abstract Image

进行埋入式界面改性以实现高效的 CsPbI2.2Br0.8 型单片包晶石/有机串联太阳能电池
宽带隙过氧化物晶体子电池(WPSC)是基于过氧化物晶体的串联太阳能电池(PTSC)最关键的组件之一,在决定串联设备的性能方面起着至关重要的作用。然而,由于宽带隙包晶石的结晶特性受到限制,WPSC 的效率明显低于其理论极限。特别是对于 ni-p 结构的全无机 WPSC(AIWPSC),由于埋藏的界面缺陷导致的严重非辐射性重组会严重降低其光伏性能。在此,一种基于丙酸基团(PA-)的高效离子液体--丙酸甲胺(MAPA)被引入到包晶/电子传输层(ETL)界面,以钝化 AIWPSC 的埋藏界面。PA- 和 Pb-Pb 二聚体之间强烈的相互作用有效地修复了埋藏界面的缺陷,并促进了包晶薄膜中更均匀的元素分布。因此,基于 CsPbI2.2Br0.8 的 AIWPSC 获得了 18.29% 的高功率转换效率(PCE)和 1.33 V 的开路电压(VOC),这说明了 MAPA 在优化 AIWPSC 性能方面的优越性。此外,通过将这些 AIWPSC 与小带隙有机太阳能电池 (SOSC) 集成,还实现了高性能 ni-p 结构无机过氧化物/有机串联太阳能电池 (AIPOTSC),其 PCE 高达 23.19%,VOC 为 2.08 V。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信