{"title":"Multifunctional Zinc Vanadium Oxide Layer on Metal Anodes Via Ultrathin Surface Coating for Enhanced Stability in Aqueous Zinc-Ion Batteries","authors":"Geun Yoo, Yong-Ryun Jo, Geon-Hyoung An","doi":"10.1021/acsenergylett.4c02573","DOIUrl":null,"url":null,"abstract":"An ultrathin zinc vanadium oxide (ZVO) layer is introduced onto a Zn anode surface using a surface-coating method. This ZVO layer is shown to inhibit corrosion of the Zn anode and promote uniform Zn deposition. Consequently, the ZVO-coated Zn (ZVO@Zn) anode significantly enhances the performance and stability of zinc ion batteries (ZIBs), demonstrating long-term cycling stability for 1000 h in a Zn symmetric cell at 2 mA cm<sup>–2</sup>. Additionally, the ZVO@Zn||MnO<sub>2</sub> cell shows improved capacity retention and rate capabilities in full-cell tests. The ZVO@Zn||MnO<sub>2</sub> cell achieves specific capacities of 227.3 and 131.8 mAh g<sup>–1</sup> at 0.3 and 2 C, respectively, compared to those of the bare Zn||MnO<sub>2</sub> cell. Furthermore, the ZVO@Zn||MnO<sub>2</sub> cell demonstrates relatively stable cycling without significant initial capacity decay, thereby indicating its enhanced long-term performance. This work presents a promising approach for accelerating the development and enhancing the performance and reliability of ZIBs.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"1 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c02573","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An ultrathin zinc vanadium oxide (ZVO) layer is introduced onto a Zn anode surface using a surface-coating method. This ZVO layer is shown to inhibit corrosion of the Zn anode and promote uniform Zn deposition. Consequently, the ZVO-coated Zn (ZVO@Zn) anode significantly enhances the performance and stability of zinc ion batteries (ZIBs), demonstrating long-term cycling stability for 1000 h in a Zn symmetric cell at 2 mA cm–2. Additionally, the ZVO@Zn||MnO2 cell shows improved capacity retention and rate capabilities in full-cell tests. The ZVO@Zn||MnO2 cell achieves specific capacities of 227.3 and 131.8 mAh g–1 at 0.3 and 2 C, respectively, compared to those of the bare Zn||MnO2 cell. Furthermore, the ZVO@Zn||MnO2 cell demonstrates relatively stable cycling without significant initial capacity decay, thereby indicating its enhanced long-term performance. This work presents a promising approach for accelerating the development and enhancing the performance and reliability of ZIBs.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.