{"title":"Simultaneous and discriminative visualization of endoplasmic reticulum and lysosomes in apoptosis and autophagy using a single fluorescent probe","authors":"Rui Yang, Xue Lu, Qinyi Gao, Jiashuo Hu, Xuechen Yao, Fangyuan Yu, Xifeng Yang, Yushen Liu, Shenqiang Wang, Mengmeng Wei","doi":"10.1016/j.snb.2024.136981","DOIUrl":null,"url":null,"abstract":"The interplay of organelles plays indispensable roles in various biological processes, and their precise interactions contribute to a series of biological functions. Therefore, the exploitation of single probes capable of simultaneously visualizing two organelles is significant yet challenging. In this study, a novel fluorescent probe able to visualize both the endoplasmic reticulum (ER) and lysosomes concurrently was utilized to monitor apoptosis and autophagy. Leveraging the photoinduced electron transfer (PET) mechanisms, the probe (named EL) demonstrated distinct variations in fluorescent intensity within solutions of different pH levels, which enables the differentiation of ER and lysosomes due to their diverse pH values. EL was also effective in monitoring apoptosis with a decrease in fluorescent intensity, and it could visualize the increase of fluorescent intensity in autophagy. Consequently, the discrimination of apoptosis and autophagy processes was achieved. The potential applications of EL in visualizing ER and lysosomes and tracking their dynamic changes during various physiological processes are significant, so this probe would prompt the development of physiology and pathology related to ER and lysosomes.","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":"19 1","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.snb.2024.136981","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The interplay of organelles plays indispensable roles in various biological processes, and their precise interactions contribute to a series of biological functions. Therefore, the exploitation of single probes capable of simultaneously visualizing two organelles is significant yet challenging. In this study, a novel fluorescent probe able to visualize both the endoplasmic reticulum (ER) and lysosomes concurrently was utilized to monitor apoptosis and autophagy. Leveraging the photoinduced electron transfer (PET) mechanisms, the probe (named EL) demonstrated distinct variations in fluorescent intensity within solutions of different pH levels, which enables the differentiation of ER and lysosomes due to their diverse pH values. EL was also effective in monitoring apoptosis with a decrease in fluorescent intensity, and it could visualize the increase of fluorescent intensity in autophagy. Consequently, the discrimination of apoptosis and autophagy processes was achieved. The potential applications of EL in visualizing ER and lysosomes and tracking their dynamic changes during various physiological processes are significant, so this probe would prompt the development of physiology and pathology related to ER and lysosomes.
期刊介绍:
Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.