A new method for conductivity prediction in polymer carbon nanofiber system by the interphase size and total conductivity of constituents

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
Yasser Zare , Muhammad Tajammal Munir , Kyong Yop Rhee , Soo-Jin Park
{"title":"A new method for conductivity prediction in polymer carbon nanofiber system by the interphase size and total conductivity of constituents","authors":"Yasser Zare ,&nbsp;Muhammad Tajammal Munir ,&nbsp;Kyong Yop Rhee ,&nbsp;Soo-Jin Park","doi":"10.1016/j.polymer.2024.127869","DOIUrl":null,"url":null,"abstract":"<div><div>Current modeling approaches for the conductivity of polymer composites containing carbon nanofiber (CNF) called as PCNFs exhibit limitations. Herein, we introduce an enhanced Ouali model to accurately forecast the PCNF conductivity by incorporating the operative CNF amount and the conductivity contributions of CNFs, interphase region, and tunneling zones. The effective CNF volume fraction is derived from the dimensions of both CNFs and interphase, while the overall conductivity calculation integrates the resistances of interphase region and tunnels. The model's accuracy is validated through empirical conductivity measurements of various PCNF samples and extensive parametric analyses. An interphase depth (<em>t</em>) of less than 8 nm renders the composite insulative, whereas peak conductivity of 0.04 S/m is achieved at an interphase depth of 40 nm and interphase conductivity of 400 S/m. These results underscore the significant influence of interphase depth and conductivity on the overall electrical performance of the composites. Furthermore, a CNF length (<em>l</em>) below 13 μm or a contact diameter (<em>d</em>) under 10 nm also results in an insulative composite. Conversely, maximum values of CNF length (80 μm) and contact diameter (40 nm) enhance the composite's conductivity to 0.1 S/m. These findings illustrate the advantageous impact of longer nanofibers and wider tunnels on the electrical conductivity of PCNFs.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"316 ","pages":"Article 127869"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124012059","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Current modeling approaches for the conductivity of polymer composites containing carbon nanofiber (CNF) called as PCNFs exhibit limitations. Herein, we introduce an enhanced Ouali model to accurately forecast the PCNF conductivity by incorporating the operative CNF amount and the conductivity contributions of CNFs, interphase region, and tunneling zones. The effective CNF volume fraction is derived from the dimensions of both CNFs and interphase, while the overall conductivity calculation integrates the resistances of interphase region and tunnels. The model's accuracy is validated through empirical conductivity measurements of various PCNF samples and extensive parametric analyses. An interphase depth (t) of less than 8 nm renders the composite insulative, whereas peak conductivity of 0.04 S/m is achieved at an interphase depth of 40 nm and interphase conductivity of 400 S/m. These results underscore the significant influence of interphase depth and conductivity on the overall electrical performance of the composites. Furthermore, a CNF length (l) below 13 μm or a contact diameter (d) under 10 nm also results in an insulative composite. Conversely, maximum values of CNF length (80 μm) and contact diameter (40 nm) enhance the composite's conductivity to 0.1 S/m. These findings illustrate the advantageous impact of longer nanofibers and wider tunnels on the electrical conductivity of PCNFs.

Abstract Image

Abstract Image

通过相间尺寸和成分总电导率预测聚合物碳纳米纤维体系电导率的新方法
目前针对含有碳纳米纤维(CNF)的聚合物复合材料(称为 PCNF)电导率的建模方法存在局限性。在此,我们引入了一种增强型 Ouali 模型,通过纳入有效的 CNF 数量以及 CNF、相间区域和隧道区的电导贡献来准确预测 PCNF 的电导率。有效 CNF 体积分数由 CNF 和相间层的尺寸得出,而整体电导率计算则综合了相间层区域和隧道的电阻。通过对各种 PCNF 样品进行经验电导率测量和广泛的参数分析,验证了该模型的准确性。相间深度 (t) 小于 8 nm 时,复合材料具有绝缘性,而相间深度为 40 nm、相间电导率为 400 S/m 时,复合材料的峰值电导率为 0.04 S/m。这些结果凸显了相间深度和电导率对复合材料整体电气性能的重要影响。此外,CNF 长度(l)小于 13 μm 或接触直径(d)小于 10 nm 也会导致复合材料绝缘。相反,CNF 长度(80 μm)和接触直径(40 nm)的最大值可将复合材料的导电率提高到 0.1 S/m。这些发现说明了更长的纳米纤维和更宽的通道对 PCNF 导电性的有利影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信