{"title":"Application of ionic wind in sampling of bioaerosols: collection efficiency, ROS/RNS production, and viability assessment","authors":"Milad Massoudifarid, Amin Piri, Massoud Massoudifarid, Jiwoo Jung, Sangwoo Kim, Jungho Hwang","doi":"10.1016/j.jhazmat.2024.136612","DOIUrl":null,"url":null,"abstract":"Studies of bioaerosol particles in airborne particulate matter have revealed their omnipresence. Therefore, spot-on sampling and identification are pivotal for assessing exposure risks. Corona discharge-based sampling has been utilized for the bioaerosol sampling. However, one of the issues regarding corona discharge-based samplers is the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which can alter the viability of bioaerosols and damage nucleic acids. Herein, the use of ionic wind as a possible alternative to reduce ROS/RNS damage to microorganisms was studied. An aerosol-to-hydrosol (ATH) ionic wind (IW) sampler was developed and compared with an ATH electrostatic precipitation (ESP) sampler having the exact physical dimensions in terms of collection efficiency, ROS/RNS production, ozone generation, viability of collected biological particles, and damage to the nucleic acids of the particles. Overall, the ESP sampler showed a higher collection efficiency and less damage to the reproducibility of the sampled bioaerosols than the IW sampler. However, polymerase chain reaction analysis of the sampled bioaerosol nucleic acids showed similar results for both devices. The IW sampler has the potential for both bioaerosol sampling and deactivation, as well as for scenarios requiring neutralized sampled particles or particle deposition on any nonmetallic surface.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"5 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136612","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Studies of bioaerosol particles in airborne particulate matter have revealed their omnipresence. Therefore, spot-on sampling and identification are pivotal for assessing exposure risks. Corona discharge-based sampling has been utilized for the bioaerosol sampling. However, one of the issues regarding corona discharge-based samplers is the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which can alter the viability of bioaerosols and damage nucleic acids. Herein, the use of ionic wind as a possible alternative to reduce ROS/RNS damage to microorganisms was studied. An aerosol-to-hydrosol (ATH) ionic wind (IW) sampler was developed and compared with an ATH electrostatic precipitation (ESP) sampler having the exact physical dimensions in terms of collection efficiency, ROS/RNS production, ozone generation, viability of collected biological particles, and damage to the nucleic acids of the particles. Overall, the ESP sampler showed a higher collection efficiency and less damage to the reproducibility of the sampled bioaerosols than the IW sampler. However, polymerase chain reaction analysis of the sampled bioaerosol nucleic acids showed similar results for both devices. The IW sampler has the potential for both bioaerosol sampling and deactivation, as well as for scenarios requiring neutralized sampled particles or particle deposition on any nonmetallic surface.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.