Ron Ruimy, Offek Tziperman, Alexey Gorlach, Klaus Mølmer, Ido Kaminer
{"title":"Many-body entanglement via ‘which-path’ information","authors":"Ron Ruimy, Offek Tziperman, Alexey Gorlach, Klaus Mølmer, Ido Kaminer","doi":"10.1038/s41534-024-00899-6","DOIUrl":null,"url":null,"abstract":"We propose a multi-particle ‘which-path’ gedanken experiment with a quantum detector. Contrary to conventional ‘which-path’ experiments, the detector maintains its quantum state during interactions with the particles. We show how such interactions can create an interference pattern that vanishes on average, as in conventional ‘which-path’ schemes, but contains hidden many-body quantum correlations. Measuring the state of the quantum detector projects the joint-particle wavefunction into highly entangled states, such as GHZ’s. Conversely, measuring the particles projects the detector wavefunction into desired states, such as Schrodinger-cat or GKP states for a harmonic-oscillator detector, e.g., a photonic cavity. Our work thus opens a new path to the creation and exploration of many-body quantum correlations in systems not often associated with these phenomena, such as atoms in waveguide QED and free electrons in transmission electron microscopy.","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"57 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00899-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a multi-particle ‘which-path’ gedanken experiment with a quantum detector. Contrary to conventional ‘which-path’ experiments, the detector maintains its quantum state during interactions with the particles. We show how such interactions can create an interference pattern that vanishes on average, as in conventional ‘which-path’ schemes, but contains hidden many-body quantum correlations. Measuring the state of the quantum detector projects the joint-particle wavefunction into highly entangled states, such as GHZ’s. Conversely, measuring the particles projects the detector wavefunction into desired states, such as Schrodinger-cat or GKP states for a harmonic-oscillator detector, e.g., a photonic cavity. Our work thus opens a new path to the creation and exploration of many-body quantum correlations in systems not often associated with these phenomena, such as atoms in waveguide QED and free electrons in transmission electron microscopy.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.