Many-body entanglement via ‘which-path’ information

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Ron Ruimy, Offek Tziperman, Alexey Gorlach, Klaus Mølmer, Ido Kaminer
{"title":"Many-body entanglement via ‘which-path’ information","authors":"Ron Ruimy, Offek Tziperman, Alexey Gorlach, Klaus Mølmer, Ido Kaminer","doi":"10.1038/s41534-024-00899-6","DOIUrl":null,"url":null,"abstract":"We propose a multi-particle ‘which-path’ gedanken experiment with a quantum detector. Contrary to conventional ‘which-path’ experiments, the detector maintains its quantum state during interactions with the particles. We show how such interactions can create an interference pattern that vanishes on average, as in conventional ‘which-path’ schemes, but contains hidden many-body quantum correlations. Measuring the state of the quantum detector projects the joint-particle wavefunction into highly entangled states, such as GHZ’s. Conversely, measuring the particles projects the detector wavefunction into desired states, such as Schrodinger-cat or GKP states for a harmonic-oscillator detector, e.g., a photonic cavity. Our work thus opens a new path to the creation and exploration of many-body quantum correlations in systems not often associated with these phenomena, such as atoms in waveguide QED and free electrons in transmission electron microscopy.","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"57 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00899-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a multi-particle ‘which-path’ gedanken experiment with a quantum detector. Contrary to conventional ‘which-path’ experiments, the detector maintains its quantum state during interactions with the particles. We show how such interactions can create an interference pattern that vanishes on average, as in conventional ‘which-path’ schemes, but contains hidden many-body quantum correlations. Measuring the state of the quantum detector projects the joint-particle wavefunction into highly entangled states, such as GHZ’s. Conversely, measuring the particles projects the detector wavefunction into desired states, such as Schrodinger-cat or GKP states for a harmonic-oscillator detector, e.g., a photonic cavity. Our work thus opens a new path to the creation and exploration of many-body quantum correlations in systems not often associated with these phenomena, such as atoms in waveguide QED and free electrons in transmission electron microscopy.

Abstract Image

通过 "路径 "信息实现多体纠缠
我们提议利用量子探测器进行多粒子 "哪条路径 "格登肯实验。与传统的 "哪条路径 "实验相反,探测器在与粒子相互作用时保持其量子态。我们展示了这种相互作用如何产生一种干扰模式,这种模式与传统的 "哪条路径 "方案一样平均消失,但却包含隐藏的多体量子相关性。测量量子探测器的状态会将粒子联合波函数投射到高度纠缠态,如 GHZ。反之,测量粒子则会将探测器波函数投射到所需的状态,如谐振子探测器(如光子腔)的薛定谔猫或 GKP 状态。因此,我们的工作开辟了一条新路,可以在通常与多体量子关联现象无关的系统中,如波导 QED 中的原子和透射电子显微镜中的自由电子中,创建和探索多体量子关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信