Photocatalytic dye removal with ZnO/Laser-Induced graphene nanocomposite

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Regina Del Sole, Alexander Dallinger, Birgit Kunert, Sreenadh Thaikkattu Sankaran, Francesco Greco, Paola Parlanti, Mauro Gemmi, Antonella Milella, Francesco Fracassi, Anna Maria Coclite
{"title":"Photocatalytic dye removal with ZnO/Laser-Induced graphene nanocomposite","authors":"Regina Del Sole, Alexander Dallinger, Birgit Kunert, Sreenadh Thaikkattu Sankaran, Francesco Greco, Paola Parlanti, Mauro Gemmi, Antonella Milella, Francesco Fracassi, Anna Maria Coclite","doi":"10.1016/j.apsusc.2024.161875","DOIUrl":null,"url":null,"abstract":"ZnO has been deposited on Laser Induced Graphene (LIG) by Atomic Layers Deposition (ALD) running up to 100, 200 and 400 number of cycles. Two different LIG substrates have been used, which differed by their porosity degree. The ALD technique allows to grow ZnO stoichiometrically on the chosen substrates down to the bottom of the pores of the material, guaranteeing an increasing coverage with increasing number of deposition cycles. The crystallinity of the deposited ZnO is also proven via XRD analysis. The photocatalytic activity of the ZnO@LIG nanocomposites has been evaluated through monitoring the discoloration of a 10<sup>-5</sup> M methylene blue (MB) solution upon UV irradiation (λ = 365 nm) over a time span of 120 min. Results indicate that the photocatalytic performance of the nanocomposites increases with the ZnO deposition time. For nanocomposites showing the higher ZnO coverage degree, after 120 min of irradiation a net MB photodegradation percentage of 71 ± 4 % and 69 ± 4 % is reached respectively for the less porous and more porous substrate. Conversely, the MB adsorption percentage of the samples decreases upon ZnO deposition, due to the reduced accessible porosity and the hydrophobicity of the nanocomposites. The method used to produce such solid supported nanocomposites is straightforward and represents a valuable option to obtain efficient environmental-friendly photoactive materials.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"14 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2024.161875","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

ZnO has been deposited on Laser Induced Graphene (LIG) by Atomic Layers Deposition (ALD) running up to 100, 200 and 400 number of cycles. Two different LIG substrates have been used, which differed by their porosity degree. The ALD technique allows to grow ZnO stoichiometrically on the chosen substrates down to the bottom of the pores of the material, guaranteeing an increasing coverage with increasing number of deposition cycles. The crystallinity of the deposited ZnO is also proven via XRD analysis. The photocatalytic activity of the ZnO@LIG nanocomposites has been evaluated through monitoring the discoloration of a 10-5 M methylene blue (MB) solution upon UV irradiation (λ = 365 nm) over a time span of 120 min. Results indicate that the photocatalytic performance of the nanocomposites increases with the ZnO deposition time. For nanocomposites showing the higher ZnO coverage degree, after 120 min of irradiation a net MB photodegradation percentage of 71 ± 4 % and 69 ± 4 % is reached respectively for the less porous and more porous substrate. Conversely, the MB adsorption percentage of the samples decreases upon ZnO deposition, due to the reduced accessible porosity and the hydrophobicity of the nanocomposites. The method used to produce such solid supported nanocomposites is straightforward and represents a valuable option to obtain efficient environmental-friendly photoactive materials.

Abstract Image

利用氧化锌/激光诱导石墨烯纳米复合材料光催化去除染料
通过原子层沉积 (ALD),氧化锌被沉积在激光诱导石墨烯 (LIG) 上,循环次数分别为 100、200 和 400 次。我们使用了两种不同的石墨烯基底,它们的孔隙度各不相同。原子层沉积(ALD)技术可以在所选基底上按化学计量生长氧化锌,直至材料的孔隙底部,从而保证随着沉积周期的增加,覆盖率也在增加。沉积氧化锌的结晶度也通过 XRD 分析得到了证实。ZnO@LIG 纳米复合材料的光催化活性是通过监测 10-5 M 亚甲基蓝(MB)溶液在紫外线照射(λ = 365 纳米)120 分钟后的褪色情况来评估的。结果表明,纳米复合材料的光催化性能随着氧化锌沉积时间的延长而提高。对于 ZnO 覆盖率较高的纳米复合材料,在辐照 120 分钟后,多孔性较差的基底和多孔性较高的基底的甲基溴净光降解率分别达到 71 ± 4 % 和 69 ± 4 %。相反,由于纳米复合材料的可进入孔隙率和疏水性降低,样品的甲基溴吸附率在氧化锌沉积后会降低。生产这种固体支撑纳米复合材料的方法简单明了,是获得高效环保光活性材料的重要选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信