Reverse Oriented Dual-Interface Built-in Electric Fields of Robust Pd1Mo1Ta2Oα Bifunctional Electrocatalysis for Zinc-Air Batteries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jun Lu, Kai Huang, Hongdae Lee, Shengyang Huang, Hao Fu, Hui Wang, Sixiao Liu, Donghyun Min, Cheng Lian, Ho Seok Park
{"title":"Reverse Oriented Dual-Interface Built-in Electric Fields of Robust Pd1Mo1Ta2Oα Bifunctional Electrocatalysis for Zinc-Air Batteries","authors":"Jun Lu, Kai Huang, Hongdae Lee, Shengyang Huang, Hao Fu, Hui Wang, Sixiao Liu, Donghyun Min, Cheng Lian, Ho Seok Park","doi":"10.1002/adfm.202418211","DOIUrl":null,"url":null,"abstract":"It is imperative yet challenging for developing highly efficient multifunctional electrocatalysts for future sustainable energy pursuits. Herein, dual-interface reinforced reverse orientation of built-in electric fields (BIEFs) is reported in Pd<sub>1</sub>Mo<sub>1</sub>Ta<sub>2</sub>Oα in-plane heterostructure, where amorphous Ta<sub>2</sub>O<sub>5</sub> and PdO<i><sub>δ</sub></i> particles are confined to PdMo nanosheet, for robust bifunctional electrocatalysts of rechargeable zinc–air batteries. The as-synthesized electrocatalyst (Pd<sub>1</sub>Mo<sub>1</sub>Ta<sub>2</sub>Oα) exhibits remarkable catalytic activity toward oxygen reduction (E<sub>on</sub> = 0.95 V, E<sub>1/2</sub> = 0.81 V) and oxygen evolution (η<sub>10</sub> = 401 mV) reactions with high kinetics and operational stability. These enhanced bifunctional electrocatalytic activities of Pd<sub>1</sub>Mo<sub>1</sub>Ta<sub>2</sub>Oα are attributed to the synergistic collaboration of dual-interface BIEFs, where PdMo || PdO<i><sub>δ</sub></i> initiating BIEF<sub>1</sub> orientation is parallel to OER external electric field (ExEF) and Ta<sub>2</sub>O<sub>5</sub> || PdO<i><sub>δ</sub></i>/PdMo initiating BIEF<sub>2</sub> orientation is parallel to ORR ExEF. In particular, the rechargeable zinc-air battery (ZAB) with the as-designed Pd<sub>1</sub>Mo<sub>1</sub>Ta<sub>2</sub>Oα electrocatalysts delivers a high specific capacity of 1050 mAh g<sup>−1</sup> and stable voltage profiles over 800 cycles. Therefore, this work provides the structural and interfacial designs of bifunctional electrocatalysts with the reverse oriented BIEFs that synergistically enhance intrinsic catalytic activity and electronic transport for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER).","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"11 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202418211","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

It is imperative yet challenging for developing highly efficient multifunctional electrocatalysts for future sustainable energy pursuits. Herein, dual-interface reinforced reverse orientation of built-in electric fields (BIEFs) is reported in Pd1Mo1Ta2Oα in-plane heterostructure, where amorphous Ta2O5 and PdOδ particles are confined to PdMo nanosheet, for robust bifunctional electrocatalysts of rechargeable zinc–air batteries. The as-synthesized electrocatalyst (Pd1Mo1Ta2Oα) exhibits remarkable catalytic activity toward oxygen reduction (Eon = 0.95 V, E1/2 = 0.81 V) and oxygen evolution (η10 = 401 mV) reactions with high kinetics and operational stability. These enhanced bifunctional electrocatalytic activities of Pd1Mo1Ta2Oα are attributed to the synergistic collaboration of dual-interface BIEFs, where PdMo || PdOδ initiating BIEF1 orientation is parallel to OER external electric field (ExEF) and Ta2O5 || PdOδ/PdMo initiating BIEF2 orientation is parallel to ORR ExEF. In particular, the rechargeable zinc-air battery (ZAB) with the as-designed Pd1Mo1Ta2Oα electrocatalysts delivers a high specific capacity of 1050 mAh g−1 and stable voltage profiles over 800 cycles. Therefore, this work provides the structural and interfacial designs of bifunctional electrocatalysts with the reverse oriented BIEFs that synergistically enhance intrinsic catalytic activity and electronic transport for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER).

Abstract Image

用于锌-空气电池的强大 Pd1Mo1Ta2Oα 双功能电催化的反向双界面内置电场
开发高效的多功能电催化剂以实现未来的可持续能源目标是当务之急,但也是一项挑战。本文报告了在 Pd1Mo1Ta2Oα 平面异质结构中的双界面强化反向取向内置电场(BIEFs),其中无定形的 Ta2O5 和 PdOδ 颗粒被限制在 PdMo 纳米片中,用于可充电锌空气电池的强健双功能电催化剂。合成的电催化剂(Pd1Mo1Ta2Oα)在氧还原(Eon = 0.95 V,E1/2 = 0.81 V)和氧进化(η10 = 401 mV)反应中表现出显著的催化活性,且具有高动力学和操作稳定性。Pd1Mo1Ta2Oα 双功能电催化活性的增强归功于双界面 BIEF 的协同作用,其中 PdMo | | PdOδ 起始 BIEF1 方向与 OER 外部电场(ExEF)平行,而 Ta2O5 | | PdOδ/PdMo 起始 BIEF2 方向与 ORR 外部电场平行。特别是,使用按设计的 Pd1Mo1Ta2Oα 电催化剂的可充电锌空气电池(ZAB)可在 800 次循环中提供 1050 mAh g-1 的高比容量和稳定的电压曲线。因此,这项工作提供了具有反向取向 BIEF 的双功能电催化剂的结构和界面设计,可协同增强氧还原反应(ORR)和氧进化反应(OER)的内在催化活性和电子传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信