Raphael A. Reyes, Sai Sundar Rajan Raghavan, Nicholas K. Hurlburt, Viola Introini, Sebastiaan Bol, Ikhlaq Hussain Kana, Rasmus W. Jensen, Elizabeth Martinez-Scholze, María Gestal-Mato, Borja López-Gutiérrez, Silvia Sanz, Cristina Bancells, Monica Lisa Fernández-Quintero, Johannes R. Loeffler, James Alexander Ferguson, Wen-Hsin Lee, Greg Michael Martin, Thor G. Theander, John P. A. Lusingu, Daniel T. R. Minja, Isaac Ssewanyana, Margaret E. Feeney, Bryan Greenhouse, Andrew B. Ward, Maria Bernabeu, Marie Pancera, Louise Turner, Evelien M. Bunnik, Thomas Lavstsen
{"title":"Broadly inhibitory antibodies to severe malaria virulence proteins","authors":"Raphael A. Reyes, Sai Sundar Rajan Raghavan, Nicholas K. Hurlburt, Viola Introini, Sebastiaan Bol, Ikhlaq Hussain Kana, Rasmus W. Jensen, Elizabeth Martinez-Scholze, María Gestal-Mato, Borja López-Gutiérrez, Silvia Sanz, Cristina Bancells, Monica Lisa Fernández-Quintero, Johannes R. Loeffler, James Alexander Ferguson, Wen-Hsin Lee, Greg Michael Martin, Thor G. Theander, John P. A. Lusingu, Daniel T. R. Minja, Isaac Ssewanyana, Margaret E. Feeney, Bryan Greenhouse, Andrew B. Ward, Maria Bernabeu, Marie Pancera, Louise Turner, Evelien M. Bunnik, Thomas Lavstsen","doi":"10.1038/s41586-024-08220-3","DOIUrl":null,"url":null,"abstract":"<p>Malaria pathology is driven by the accumulation of <i>Plasmodium falciparum</i>-infected erythrocytes in microvessels<sup>1</sup>. This process is mediated by the polymorphic erythrocyte membrane protein 1 (PfEMP1) adhesion proteins of the parasite. A subset of PfEMP1 variants that bind to human endothelial protein C receptor (EPCR) through their CIDRα1 domains is responsible for severe malaria pathogenesis<sup>2</sup>. A longstanding question is whether individual antibodies can recognize the large repertoire of circulating PfEMP1 variants. Here we describe two broadly reactive and inhibitory human monoclonal antibodies to CIDRα1. The antibodies isolated from two different individuals exhibited similar and consistent EPCR-binding inhibition of diverse CIDRα1 domains, representing five of the six subclasses of CIDRα1. Both antibodies inhibited EPCR binding of both recombinant full-length and native PfEMP1 proteins, as well as parasite sequestration in bioengineered 3D human brain microvessels under physiologically relevant flow conditions. Structural analyses of the two antibodies in complex with three different CIDRα1 antigen variants reveal similar binding mechanisms that depend on interactions with three highly conserved amino acid residues of the EPCR-binding site in CIDRα1. These broadly reactive antibodies are likely to represent a common mechanism of acquired immunity to severe malaria and offer novel insights for the design of a vaccine or treatment targeting severe malaria.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"14 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08220-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Malaria pathology is driven by the accumulation of Plasmodium falciparum-infected erythrocytes in microvessels1. This process is mediated by the polymorphic erythrocyte membrane protein 1 (PfEMP1) adhesion proteins of the parasite. A subset of PfEMP1 variants that bind to human endothelial protein C receptor (EPCR) through their CIDRα1 domains is responsible for severe malaria pathogenesis2. A longstanding question is whether individual antibodies can recognize the large repertoire of circulating PfEMP1 variants. Here we describe two broadly reactive and inhibitory human monoclonal antibodies to CIDRα1. The antibodies isolated from two different individuals exhibited similar and consistent EPCR-binding inhibition of diverse CIDRα1 domains, representing five of the six subclasses of CIDRα1. Both antibodies inhibited EPCR binding of both recombinant full-length and native PfEMP1 proteins, as well as parasite sequestration in bioengineered 3D human brain microvessels under physiologically relevant flow conditions. Structural analyses of the two antibodies in complex with three different CIDRα1 antigen variants reveal similar binding mechanisms that depend on interactions with three highly conserved amino acid residues of the EPCR-binding site in CIDRα1. These broadly reactive antibodies are likely to represent a common mechanism of acquired immunity to severe malaria and offer novel insights for the design of a vaccine or treatment targeting severe malaria.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.