Sean J. Jurgens, Joel T. Rämö, Daria R. Kramarenko, Leonoor F. J. M. Wijdeveld, Jan Haas, Mark D. Chaffin, Sophie Garnier, Liam Gaziano, Lu-Chen Weng, Alex Lipov, Sean L. Zheng, Albert Henry, Jennifer E. Huffman, Saketh Challa, Frank Rühle, Carmen Diaz Verdugo, Christian Krijger Juárez, Shinwan Kany, Constance A. van Orsouw, Kiran Biddinger, Edwin Poel, Amanda L. Elliott, Xin Wang, Catherine Francis, Richard Ruan, Satoshi Koyama, Leander Beekman, Dominic S. Zimmerman, Jean-François Deleuze, Eric Villard, David-Alexandre Trégouët, Richard Isnard, FinnGen, VA Million Veteran Program, HERMES Consortium, Dorret I. Boomsma, Eco J. C. de Geus, Rafik Tadros, Yigal M. Pinto, Arthur A. M. Wilde, Jouke-Jan Hottenga, Juha Sinisalo, Teemu Niiranen, Roddy Walsh, Amand F. Schmidt, Seung Hoan Choi, Kyong-Mi Chang, Philip S. Tsao, Paul M. Matthews, James S. Ware, R. Thomas Lumbers, Saskia van der Crabben, Jari Laukkanen, Aarno Palotie, Ahmad S. Amin, Philippe Charron, Benjamin Meder, Patrick T. Ellinor, Mark Daly, Krishna G. Aragam, Connie R. Bezzina
{"title":"Genome-wide association study reveals mechanisms underlying dilated cardiomyopathy and myocardial resilience","authors":"Sean J. Jurgens, Joel T. Rämö, Daria R. Kramarenko, Leonoor F. J. M. Wijdeveld, Jan Haas, Mark D. Chaffin, Sophie Garnier, Liam Gaziano, Lu-Chen Weng, Alex Lipov, Sean L. Zheng, Albert Henry, Jennifer E. Huffman, Saketh Challa, Frank Rühle, Carmen Diaz Verdugo, Christian Krijger Juárez, Shinwan Kany, Constance A. van Orsouw, Kiran Biddinger, Edwin Poel, Amanda L. Elliott, Xin Wang, Catherine Francis, Richard Ruan, Satoshi Koyama, Leander Beekman, Dominic S. Zimmerman, Jean-François Deleuze, Eric Villard, David-Alexandre Trégouët, Richard Isnard, FinnGen, VA Million Veteran Program, HERMES Consortium, Dorret I. Boomsma, Eco J. C. de Geus, Rafik Tadros, Yigal M. Pinto, Arthur A. M. Wilde, Jouke-Jan Hottenga, Juha Sinisalo, Teemu Niiranen, Roddy Walsh, Amand F. Schmidt, Seung Hoan Choi, Kyong-Mi Chang, Philip S. Tsao, Paul M. Matthews, James S. Ware, R. Thomas Lumbers, Saskia van der Crabben, Jari Laukkanen, Aarno Palotie, Ahmad S. Amin, Philippe Charron, Benjamin Meder, Patrick T. Ellinor, Mark Daly, Krishna G. Aragam, Connie R. Bezzina","doi":"10.1038/s41588-024-01975-5","DOIUrl":null,"url":null,"abstract":"Dilated cardiomyopathy (DCM) is a heart muscle disease that represents an important cause of morbidity and mortality, yet causal mechanisms remain largely elusive. Here, we perform a large-scale genome-wide association study and multitrait analysis for DCM using 9,365 cases and 946,368 controls. We identify 70 genome-wide significant loci, which show broad replication in independent samples and map to 63 prioritized genes. Tissue, cell type and pathway enrichment analyses highlight the central role of the cardiomyocyte and contractile apparatus in DCM pathogenesis. Polygenic risk scores constructed from our genome-wide association study predict DCM across different ancestry groups, show differing contributions to DCM depending on rare pathogenic variant status and associate with systolic heart failure across various clinical settings. Mendelian randomization analyses reveal actionable potential causes of DCM, including higher bodyweight and higher systolic blood pressure. Our findings provide insights into the genetic architecture and mechanisms underlying DCM and myocardial function more broadly. Genome-wide association and multitrait analyses for dilated cardiomyopathy (DCM) using 9,365 cases and 946,368 controls provide insights into the mechanisms underlying DCM and myocardial resilience","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"56 12","pages":"2636-2645"},"PeriodicalIF":31.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41588-024-01975-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-024-01975-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Dilated cardiomyopathy (DCM) is a heart muscle disease that represents an important cause of morbidity and mortality, yet causal mechanisms remain largely elusive. Here, we perform a large-scale genome-wide association study and multitrait analysis for DCM using 9,365 cases and 946,368 controls. We identify 70 genome-wide significant loci, which show broad replication in independent samples and map to 63 prioritized genes. Tissue, cell type and pathway enrichment analyses highlight the central role of the cardiomyocyte and contractile apparatus in DCM pathogenesis. Polygenic risk scores constructed from our genome-wide association study predict DCM across different ancestry groups, show differing contributions to DCM depending on rare pathogenic variant status and associate with systolic heart failure across various clinical settings. Mendelian randomization analyses reveal actionable potential causes of DCM, including higher bodyweight and higher systolic blood pressure. Our findings provide insights into the genetic architecture and mechanisms underlying DCM and myocardial function more broadly. Genome-wide association and multitrait analyses for dilated cardiomyopathy (DCM) using 9,365 cases and 946,368 controls provide insights into the mechanisms underlying DCM and myocardial resilience
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution