Ultrathin Ti3C2Tx MXene/Cellulose nanofiber composite film for enhanced mechanics & EMI shielding via freeze-thaw intercalation

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Dongao Liu, Lei Li, Quanxin Gong, Gui Du, Yuhua Xue, Guisheng Li, Shengjuan Li
{"title":"Ultrathin Ti3C2Tx MXene/Cellulose nanofiber composite film for enhanced mechanics & EMI shielding via freeze-thaw intercalation","authors":"Dongao Liu, Lei Li, Quanxin Gong, Gui Du, Yuhua Xue, Guisheng Li, Shengjuan Li","doi":"10.1016/j.apsusc.2024.161877","DOIUrl":null,"url":null,"abstract":"Developing high-performance and cost-effective microwave-absorbing materials for large-scale production is crucial in addressing the current electromagnetic pollution problem. This has become a focus of scientific research. This study proposes a cost-effective freeze-thaw method to enable large-scale production of MXene-based flexible films. This method streamlines the preparation process and produces ultrathin flexible MXene/CNF composite films with a multidimensional layered structure. The multidimensional layered structure provides additional scattering and reflecting paths for electromagnetic waves, increasing the interaction time between electromagnetic waves and the material. Additionally, the redistributed interfacial charge enhances the dielectric loss and electromagnetic shielding performance for the shielding material, thereby improving microwave absorption efficiency. Owing to these advantages, the MXene/CNF composite films prepared using the freeze-thaw method exhibit excellent electromagnetic shielding and mechanical properties. The conductivity of the composite film can reach 165.9 S cm<sup>−1</sup> with a shielding effectiveness of 54.7 dB, and a high efficiency of 99.74 %. According to the simulations using a finite element method (FEM), the arrangement and rotation angles of all CNF layers significantly affect the electromagnetic shielding effectiveness of the MXenen/CNF composite films.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"6 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2024.161877","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing high-performance and cost-effective microwave-absorbing materials for large-scale production is crucial in addressing the current electromagnetic pollution problem. This has become a focus of scientific research. This study proposes a cost-effective freeze-thaw method to enable large-scale production of MXene-based flexible films. This method streamlines the preparation process and produces ultrathin flexible MXene/CNF composite films with a multidimensional layered structure. The multidimensional layered structure provides additional scattering and reflecting paths for electromagnetic waves, increasing the interaction time between electromagnetic waves and the material. Additionally, the redistributed interfacial charge enhances the dielectric loss and electromagnetic shielding performance for the shielding material, thereby improving microwave absorption efficiency. Owing to these advantages, the MXene/CNF composite films prepared using the freeze-thaw method exhibit excellent electromagnetic shielding and mechanical properties. The conductivity of the composite film can reach 165.9 S cm−1 with a shielding effectiveness of 54.7 dB, and a high efficiency of 99.74 %. According to the simulations using a finite element method (FEM), the arrangement and rotation angles of all CNF layers significantly affect the electromagnetic shielding effectiveness of the MXenen/CNF composite films.

Abstract Image

通过冻融插层增强力学和电磁干扰屏蔽的超薄 Ti3C2Tx MXene/纤维素纳米纤维复合薄膜
开发高性能、高性价比的微波吸收材料并进行大规模生产,对于解决当前的电磁污染问题至关重要。这已成为科学研究的重点。本研究提出了一种具有成本效益的冻融法,以实现基于 MXene 的柔性薄膜的大规模生产。该方法简化了制备过程,可生产出具有多维分层结构的超薄柔性 MXene/CNF 复合薄膜。多维分层结构为电磁波提供了额外的散射和反射路径,增加了电磁波与材料之间的相互作用时间。此外,重新分布的界面电荷还能增强屏蔽材料的介电损耗和电磁屏蔽性能,从而提高微波吸收效率。由于这些优点,采用冻融法制备的 MXene/CNF 复合薄膜具有优异的电磁屏蔽性能和机械性能。复合薄膜的电导率可达 165.9 S cm-1,屏蔽效果为 54.7 dB,效率高达 99.74 %。根据有限元法(FEM)的模拟,所有 CNF 层的排列和旋转角度对 MXenen/CNF 复合薄膜的电磁屏蔽效果有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信