Sven Roediger, Emilien Le Saux, Philip Boehm, Bill Morandi
{"title":"Coupling of unactivated alkyl electrophiles using frustrated ion pairs","authors":"Sven Roediger, Emilien Le Saux, Philip Boehm, Bill Morandi","doi":"10.1038/s41586-024-08195-1","DOIUrl":null,"url":null,"abstract":"<p>Cross-electrophile coupling reactions have evolved into a major strategy for rapidly assembling important organic molecules<sup>1</sup>. Two readily accessible electrophiles are coupled to form new C–C bonds, providing a key advantage over traditional cross-coupling strategies that require the preformation of reactive organometallic species. Yet, the formation of C(<i>sp</i><sup>3</sup>)–C(<i>sp</i><sup>3</sup>) bonds that form the core of nearly all organic compounds remains highly challenging with current approaches, calling for the design of innovative new strategies. Here we report a distinct, transition-metal-free platform to form such bonds without the need for activating or stabilizing groups on the coupling partners. The reaction is enabled by an unusual single-electron transfer in a frustrated ion pair, and it can couple fragments containing functional groups that would be challenging in related transition-metal-catalysed processes. Moreover, we could further leverage this new mechanistic manifold in the design of other reactions, showing the broad potential of this type of reactivity. We anticipate that our results will provide a framework for further exploration of this reactivity pattern to tackle challenging problems in organic synthesis.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"57 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08195-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cross-electrophile coupling reactions have evolved into a major strategy for rapidly assembling important organic molecules1. Two readily accessible electrophiles are coupled to form new C–C bonds, providing a key advantage over traditional cross-coupling strategies that require the preformation of reactive organometallic species. Yet, the formation of C(sp3)–C(sp3) bonds that form the core of nearly all organic compounds remains highly challenging with current approaches, calling for the design of innovative new strategies. Here we report a distinct, transition-metal-free platform to form such bonds without the need for activating or stabilizing groups on the coupling partners. The reaction is enabled by an unusual single-electron transfer in a frustrated ion pair, and it can couple fragments containing functional groups that would be challenging in related transition-metal-catalysed processes. Moreover, we could further leverage this new mechanistic manifold in the design of other reactions, showing the broad potential of this type of reactivity. We anticipate that our results will provide a framework for further exploration of this reactivity pattern to tackle challenging problems in organic synthesis.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.