Iron carbonate hydroxide-iron oxide hetero-phase catalyst: A bifunctional electrocatalyst for urea boosted overall water splitting

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Gunasekaran Arunkumar, Lokeshraj Srinivasan, Govindan Deviga, Mariappan Mariappan, Mehboobali Pannipara, Abdullah G. Al-Sehemi, Savarimuthu Philip Anthony
{"title":"Iron carbonate hydroxide-iron oxide hetero-phase catalyst: A bifunctional electrocatalyst for urea boosted overall water splitting","authors":"Gunasekaran Arunkumar, Lokeshraj Srinivasan, Govindan Deviga, Mariappan Mariappan, Mehboobali Pannipara, Abdullah G. Al-Sehemi, Savarimuthu Philip Anthony","doi":"10.1016/j.jallcom.2024.177676","DOIUrl":null,"url":null,"abstract":"Iron carbonate hydroxide-iron oxide hetero-phase bifunctional electrocatalyst was directly fabricated on nickel foam (NF), which exhibited strong urea oxidation reaction (UOR) and overall water splitting including sea water splitting. Hydrothermal method was adopted for fabrication of iron carbonate hydroxide-iron oxide catalyst (<strong>1-3</strong>) and deposition time was varied (3<!-- --> <!-- -->h (<strong>1</strong>), 6<!-- --> <!-- -->h (<strong>2</strong>) and 12<!-- --> <!-- -->h (<strong>3</strong>)) to optimize the electrocatalytic activity. FTIR and X-ray photoelectron spectroscopic (XPS) analysis suggested the formation of iron carbonate hydroxide-iron oxide. OER studies revealed relatively strong activity for <strong>1</strong> compared to <strong>2</strong> and <strong>3</strong> in alkaline condition. <strong>1</strong> required the overpotential of 238<!-- --> <!-- -->mV for producing the current density of 50<!-- --> <!-- -->mA/cm<sup>2</sup> whereas <strong>2</strong> and <strong>3</strong> needed 248 and 280<!-- --> <!-- -->mV, respectively. In contrast, <strong>3</strong> showed strong HER activity that required overpotential of 301<!-- --> <!-- -->mV to achieve 50<!-- --> <!-- -->mA/cm<sup>2</sup> whereas <strong>2</strong> and <strong>1</strong> needed 303 and 343<!-- --> <!-- -->mV, respectively. Hence, <strong>2</strong> was chosen to fabricate overall water splitting and UOR. In presence of urea, <strong>2</strong> required low overpotential (130<!-- --> <!-- -->mV) to produce 50<!-- --> <!-- -->mA/cm<sup>2</sup> current density. For overall water splitting, <strong>2</strong> needed 1.71<!-- --> <!-- -->V to produce 10<!-- --> <!-- -->mA/cm<sup>2</sup> current density. The UOR combined cell required only 1.56<!-- --> <!-- -->V to achieve 10<!-- --> <!-- -->mA/cm<sup>2</sup>. Tafel slope, impedance and electrochemical active surface area (ECSA) calculation suggests improved kinetics with reduced charge transfer resistance and more active sites for <strong>2</strong>. The stability studies indicated good stability of <strong>2</strong> in OER, HER and overall water splitting. After catalysis analysis indicated the formation of FeOOH and FeO active species during OER and HER, respectively. Thus, the present work developed a low-cost transition metal based bifunctional electrocatalyst for overall water splitting.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"73 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177676","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Iron carbonate hydroxide-iron oxide hetero-phase bifunctional electrocatalyst was directly fabricated on nickel foam (NF), which exhibited strong urea oxidation reaction (UOR) and overall water splitting including sea water splitting. Hydrothermal method was adopted for fabrication of iron carbonate hydroxide-iron oxide catalyst (1-3) and deposition time was varied (3 h (1), 6 h (2) and 12 h (3)) to optimize the electrocatalytic activity. FTIR and X-ray photoelectron spectroscopic (XPS) analysis suggested the formation of iron carbonate hydroxide-iron oxide. OER studies revealed relatively strong activity for 1 compared to 2 and 3 in alkaline condition. 1 required the overpotential of 238 mV for producing the current density of 50 mA/cm2 whereas 2 and 3 needed 248 and 280 mV, respectively. In contrast, 3 showed strong HER activity that required overpotential of 301 mV to achieve 50 mA/cm2 whereas 2 and 1 needed 303 and 343 mV, respectively. Hence, 2 was chosen to fabricate overall water splitting and UOR. In presence of urea, 2 required low overpotential (130 mV) to produce 50 mA/cm2 current density. For overall water splitting, 2 needed 1.71 V to produce 10 mA/cm2 current density. The UOR combined cell required only 1.56 V to achieve 10 mA/cm2. Tafel slope, impedance and electrochemical active surface area (ECSA) calculation suggests improved kinetics with reduced charge transfer resistance and more active sites for 2. The stability studies indicated good stability of 2 in OER, HER and overall water splitting. After catalysis analysis indicated the formation of FeOOH and FeO active species during OER and HER, respectively. Thus, the present work developed a low-cost transition metal based bifunctional electrocatalyst for overall water splitting.

Abstract Image

氢氧化碳酸铁-氧化铁异相催化剂:促进尿素整体水分离的双功能电催化剂
在泡沫镍(NF)上直接制备了碳酸氢铁-氧化铁异相双功能电催化剂,该催化剂具有很强的尿素氧化反应(UOR)和整体水分离(包括海水分离)性能。采用水热法制备碳酸铁氢氧化物-氧化铁催化剂(1-3),并改变沉积时间(3 小时(1)、6 小时(2)和 12 小时(3))以优化电催化活性。傅立叶变换红外光谱和 X 射线光电子能谱 (XPS) 分析表明形成了碳酸铁氢氧化物-氧化铁。OER 研究表明,在碱性条件下,与 2 和 3 相比,1 的活性相对较强。1 需要 238 mV 的过电位才能产生 50 mA/cm2 的电流密度,而 2 和 3 则分别需要 248 mV 和 280 mV。相反,3 显示出很强的热释光活性,需要 301 mV 的过电位才能产生 50 mA/cm2 的电流密度,而 2 和 1 分别需要 303 mV 和 343 mV。因此,我们选择 2 来制造整体水分离和 UOR。在尿素存在的情况下,2 需要较低的过电位(130 mV)来产生 50 mA/cm2 的电流密度。对于整体水分离,2 需要 1.71 V 的电压才能产生 10 mA/cm2 的电流密度。UOR 组合电池仅需 1.56 V 即可达到 10 mA/cm2。塔菲尔斜率、阻抗和电化学活性表面积(ECSA)计算表明,由于电荷转移电阻减小,2 的活性位点增加,因此动力学性能得到改善。稳定性研究表明,2 在 OER、HER 和整体水分离中具有良好的稳定性。催化后分析表明,在 OER 和 HER 过程中分别形成了 FeOOH 和 FeO 活性物种。因此,本研究开发出了一种用于整体水分离的低成本过渡金属双功能电催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信