Patterned electrical brain stimulation by a wireless network of implantable microdevices

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
A. H. Lee, J. Lee, V. Leung, L. Larson, A. Nurmikko
{"title":"Patterned electrical brain stimulation by a wireless network of implantable microdevices","authors":"A. H. Lee, J. Lee, V. Leung, L. Larson, A. Nurmikko","doi":"10.1038/s41467-024-54542-1","DOIUrl":null,"url":null,"abstract":"<p>Transmitting meaningful information into brain circuits by electronic means is a challenge facing brain-computer interfaces. A key goal is to find an approach to inject spatially structured local current stimuli across swaths of sensory areas of the cortex. Here, we introduce a wireless approach to multipoint patterned electrical microstimulation by a spatially distributed epicortically implanted network of silicon microchips to target specific areas of the cortex. Each sub-millimeter-sized microchip harvests energy from an external radio-frequency source and converts this into biphasic current injected focally into tissue by a pair of integrated microwires. The amplitude, period, and repetition rate of injected current from each chip are controlled across the implant network by implementing a pre-scheduled, collision-free bitmap wireless communication protocol featuring sub-millisecond latency. As a proof-of-concept technology demonstration, a network of 30 wireless stimulators was chronically implanted into motor and sensory areas of the cortex in a freely moving rat for three months. We explored the effects of patterned intracortical electrical stimulation on trained animal behavior at average RF powers well below regulatory safety limits.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"57 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54542-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Transmitting meaningful information into brain circuits by electronic means is a challenge facing brain-computer interfaces. A key goal is to find an approach to inject spatially structured local current stimuli across swaths of sensory areas of the cortex. Here, we introduce a wireless approach to multipoint patterned electrical microstimulation by a spatially distributed epicortically implanted network of silicon microchips to target specific areas of the cortex. Each sub-millimeter-sized microchip harvests energy from an external radio-frequency source and converts this into biphasic current injected focally into tissue by a pair of integrated microwires. The amplitude, period, and repetition rate of injected current from each chip are controlled across the implant network by implementing a pre-scheduled, collision-free bitmap wireless communication protocol featuring sub-millisecond latency. As a proof-of-concept technology demonstration, a network of 30 wireless stimulators was chronically implanted into motor and sensory areas of the cortex in a freely moving rat for three months. We explored the effects of patterned intracortical electrical stimulation on trained animal behavior at average RF powers well below regulatory safety limits.

Abstract Image

通过植入式微型设备无线网络进行模式化脑电刺激
通过电子手段向大脑回路传输有意义的信息是脑机接口面临的一项挑战。一个关键目标是找到一种方法,在大脑皮层的成片感觉区域注入空间结构局部电流刺激。在这里,我们介绍了一种无线方法,通过空间分布的外皮植入硅微芯片网络,针对大脑皮层的特定区域进行多点模式化电微刺激。每个亚毫米大小的微芯片从外部射频源采集能量,并将其转换为双相电流,通过一对集成微导线集中注入组织。每个芯片注入电流的振幅、周期和重复率可通过实施预先安排的无碰撞位图无线通信协议在整个植入网络中进行控制,其特点是具有亚毫秒级的延迟。作为概念验证技术演示,我们在一只自由活动的大鼠皮层运动和感觉区域长期植入了由 30 个无线刺激器组成的网络,为期三个月。我们探索了在平均射频功率远低于监管安全限制的情况下,模式化皮层内电刺激对动物训练行为的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信