Early and late place cells during postnatal development of the hippocampus

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Chenyue Wang, Hongjiang Yang, Shijie Chen, Cheng Wang, Xiaojing Chen
{"title":"Early and late place cells during postnatal development of the hippocampus","authors":"Chenyue Wang, Hongjiang Yang, Shijie Chen, Cheng Wang, Xiaojing Chen","doi":"10.1038/s41467-024-54320-z","DOIUrl":null,"url":null,"abstract":"<p>A proportion of hippocampal CA1 neurons function as place cells from the onset of navigation, which are referred to as early place cells. It is not clear whether this subset of neurons is predisposed to become place cells during early stages, or if all neurons have this potential. Here, we longitudinally imaged the activity of CA1 neurons in developing male rats during navigation with both one-photon and two-photon microscopy. Our results suggested that a largely consistent population of cells functioned as early place cells, demonstrating higher spatial coding abilities across environments and a tendency to form more synchronous cell assemblies. Early place cells were present in both deep and superficial layers of CA1. Cells in the deep layer exhibited greater synchrony than those in the superficial layer during early ages. These results support the theory that an initial cognitive map is primarily shaped by a predetermined set of hippocampal cells.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"13 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54320-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A proportion of hippocampal CA1 neurons function as place cells from the onset of navigation, which are referred to as early place cells. It is not clear whether this subset of neurons is predisposed to become place cells during early stages, or if all neurons have this potential. Here, we longitudinally imaged the activity of CA1 neurons in developing male rats during navigation with both one-photon and two-photon microscopy. Our results suggested that a largely consistent population of cells functioned as early place cells, demonstrating higher spatial coding abilities across environments and a tendency to form more synchronous cell assemblies. Early place cells were present in both deep and superficial layers of CA1. Cells in the deep layer exhibited greater synchrony than those in the superficial layer during early ages. These results support the theory that an initial cognitive map is primarily shaped by a predetermined set of hippocampal cells.

Abstract Image

海马出生后发育过程中的早期和晚期位置细胞
一部分海马 CA1 神经元在开始导航时就具有位置细胞的功能,这部分神经元被称为早期位置细胞。目前还不清楚这部分神经元是否在早期阶段就倾向于成为位置细胞,或者是否所有神经元都有这种潜能。在这里,我们用单光子和双光子显微镜对发育中雄性大鼠的 CA1 神经元在导航过程中的活动进行了纵向成像。我们的研究结果表明,大体一致的细胞群具有早期位置细胞的功能,它们在不同环境中表现出更高的空间编码能力,并倾向于形成更同步的细胞集合。早期位置细胞存在于CA1的深层和浅层。在早期,深层细胞比表层细胞表现出更高的同步性。这些结果支持了初始认知图谱主要由一组预定的海马细胞形成的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信