Large-scale free-standing Bi2Te3/Si heterostructures developed by a modified solvothermal method for a self-powered and efficient imaging photodetector
Song Yang, Shujie Jiao, Yiyin Nie, Yue Zhao, Xiaodi Jia, Shiyong Gao, Dongbo Wang, Jinzhong Wang, Hongwei Liang
{"title":"Large-scale free-standing Bi2Te3/Si heterostructures developed by a modified solvothermal method for a self-powered and efficient imaging photodetector","authors":"Song Yang, Shujie Jiao, Yiyin Nie, Yue Zhao, Xiaodi Jia, Shiyong Gao, Dongbo Wang, Jinzhong Wang, Hongwei Liang","doi":"10.1016/j.jallcom.2024.177694","DOIUrl":null,"url":null,"abstract":"Topological insulator bismuth telluride (Bi<sub>2</sub>Te<sub>3</sub>), an exotic state of quantum matter, has broad application prospects in next-generation optoelectronic devices. However, photoexcited carriers in Bi<sub>2</sub>Te<sub>3</sub> usually relax rapidly due to the lack of a large band gap. Herein, high-quality Bi<sub>2</sub>Te<sub>3</sub>/Si heterojunction is successfully synthesized by a low-cost modified two-step solvothermal method to grow large-scale free-standing Bi<sub>2</sub>Te<sub>3</sub> nanosheets on a Si substrate. Benefiting from the promotion of photogenerated carrier separation and transport by the built-in electric field at the Bi<sub>2</sub>Te<sub>3</sub>/Si heterojunction interface, the Bi<sub>2</sub>Te<sub>3</sub>/Si heterojunction photodetector exhibits a high responsivity of 16.44<!-- --> <!-- -->mA<!-- --> <!-- -->W<sup>-1</sup>, a high specific detectivity of 2.44 × 10<sup>11</sup> Jones, and fast rise/recovery times of 11/13 ms under 470<!-- --> <!-- -->nm illumination at zero bias. Additionally, the device has potential applications in high-resolution imaging. In view of its overall photosensitivity performance and low cost, the Bi<sub>2</sub>Te<sub>3</sub>/Si heterojunction synthesized by the solvothermal method has a promising application in fast broadband photodetectors, and also provide a new route for the growth of Bi<sub>2</sub>Te<sub>3</sub> nanosheets on substrates.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"6 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177694","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Topological insulator bismuth telluride (Bi2Te3), an exotic state of quantum matter, has broad application prospects in next-generation optoelectronic devices. However, photoexcited carriers in Bi2Te3 usually relax rapidly due to the lack of a large band gap. Herein, high-quality Bi2Te3/Si heterojunction is successfully synthesized by a low-cost modified two-step solvothermal method to grow large-scale free-standing Bi2Te3 nanosheets on a Si substrate. Benefiting from the promotion of photogenerated carrier separation and transport by the built-in electric field at the Bi2Te3/Si heterojunction interface, the Bi2Te3/Si heterojunction photodetector exhibits a high responsivity of 16.44 mA W-1, a high specific detectivity of 2.44 × 1011 Jones, and fast rise/recovery times of 11/13 ms under 470 nm illumination at zero bias. Additionally, the device has potential applications in high-resolution imaging. In view of its overall photosensitivity performance and low cost, the Bi2Te3/Si heterojunction synthesized by the solvothermal method has a promising application in fast broadband photodetectors, and also provide a new route for the growth of Bi2Te3 nanosheets on substrates.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.