Olívia Moraes Ruberti, Heitor Moreno Junior, Bruno Rodrigues
{"title":"Exploring the Role of Prefrontal Cortex tDCS in Hypertension: A Mini-Review.","authors":"Olívia Moraes Ruberti, Heitor Moreno Junior, Bruno Rodrigues","doi":"10.2174/011871529X343701241113100959","DOIUrl":null,"url":null,"abstract":"<p><p>Arterial Hypertension (HTN) is the leading cause of cardiovascular diseases, which, in turn, are the primary cause of mortality worldwide. The success rates in Blood Pressure (BP) control among the general population remain unacceptably low. HTN etiology is multifactorial, but ample evidence has shown an essential role of the Autonomic Nervous System (ANS) dysfunction in its physiopathology. Concurrently, studies have pointed to the promising effect of non-invasive cortical stimulation techniques, such as transcranial Direct Current Stimulation (tDCS), on modulating blood pressure and the ANS. tDCS involves the application of a direct low-intensity electric current between two electrodes (cathode and anode) placed on the scalp and skull over areas of interest in the cerebral cortex. The impacts of this technique on regulating BP levels and cardiovascular autonomic modulation have excellent potential to be explored in hypertension. This study aimed to review and discuss the existing evidence concerning the efficacy of tDCS in modulating BP and ANS, focusing on its potential as a therapeutic intervention for HTN. This narrative mini-review presents and discusses critical findings regarding using tDCS to modulate BP and the ANS. Data obtained from clinical and preclinical studies have been addressed in this work. The evidence gathered and discussed in this mini-review suggests the promising role of tDCS as a non-invasive intervention for HTN; however, the underlying mechanisms through which it exerts its effects remain poorly understood. More mechanistic studies must be carried out to draw definitive conclusions regarding the effectiveness and safety of tDCS as a treatment for HTN.</p>","PeriodicalId":93925,"journal":{"name":"Cardiovascular & hematological disorders drug targets","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular & hematological disorders drug targets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/011871529X343701241113100959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Arterial Hypertension (HTN) is the leading cause of cardiovascular diseases, which, in turn, are the primary cause of mortality worldwide. The success rates in Blood Pressure (BP) control among the general population remain unacceptably low. HTN etiology is multifactorial, but ample evidence has shown an essential role of the Autonomic Nervous System (ANS) dysfunction in its physiopathology. Concurrently, studies have pointed to the promising effect of non-invasive cortical stimulation techniques, such as transcranial Direct Current Stimulation (tDCS), on modulating blood pressure and the ANS. tDCS involves the application of a direct low-intensity electric current between two electrodes (cathode and anode) placed on the scalp and skull over areas of interest in the cerebral cortex. The impacts of this technique on regulating BP levels and cardiovascular autonomic modulation have excellent potential to be explored in hypertension. This study aimed to review and discuss the existing evidence concerning the efficacy of tDCS in modulating BP and ANS, focusing on its potential as a therapeutic intervention for HTN. This narrative mini-review presents and discusses critical findings regarding using tDCS to modulate BP and the ANS. Data obtained from clinical and preclinical studies have been addressed in this work. The evidence gathered and discussed in this mini-review suggests the promising role of tDCS as a non-invasive intervention for HTN; however, the underlying mechanisms through which it exerts its effects remain poorly understood. More mechanistic studies must be carried out to draw definitive conclusions regarding the effectiveness and safety of tDCS as a treatment for HTN.