Machine Learning-Based Prognostic Gene Signature for Early Triple Negative Breast Cancer.

IF 4.1 2区 医学 Q2 ONCOLOGY
Ju Won Kim, Jonghyun Lee, Sung Hak Lee, Sangjeong Ahn, Kyong Hwa Park
{"title":"Machine Learning-Based Prognostic Gene Signature for Early Triple Negative Breast Cancer.","authors":"Ju Won Kim, Jonghyun Lee, Sung Hak Lee, Sangjeong Ahn, Kyong Hwa Park","doi":"10.4143/crt.2024.937","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to develop a machine learning-based approach to identify prognostic gene signatures for early-stage Triple Negative Breast Cancer (TNBC) using next-generation sequencing data from Asian populations.</p><p><strong>Materials and methods: </strong>We utilized next-generation sequencing data to analyze gene expression profiles and identify potential biomarkers. Our methodology involved integrating various machine learning techniques, including feature selection and model optimization. We employed logistic regression, Kaplan-Meier survival analysis, and receiver operating characteristic (ROC) curves to validate the identified gene signatures.</p><p><strong>Results: </strong>We identified a gene signature significantly associated with relapse in TNBC patients. The predictive model demonstrated robustness and accuracy, with an area under the ROC curve (AUROC) of 0.9087, sensitivity of 0.8750, and specificity of 0.9231. The Kaplan-Meier survival analysis revealed a strong association between the gene signature and patient relapse, further validated by logistic regression analysis.</p><p><strong>Conclusion: </strong>This study presents a novel machine learning-based prognostic tool for TNBC, offering significant implications for early detection and personalized treatment. The identified gene signature provides a promising approach for improving the management of TNBC, contributing to the advancement of precision oncology.</p>","PeriodicalId":49094,"journal":{"name":"Cancer Research and Treatment","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Research and Treatment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4143/crt.2024.937","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study aimed to develop a machine learning-based approach to identify prognostic gene signatures for early-stage Triple Negative Breast Cancer (TNBC) using next-generation sequencing data from Asian populations.

Materials and methods: We utilized next-generation sequencing data to analyze gene expression profiles and identify potential biomarkers. Our methodology involved integrating various machine learning techniques, including feature selection and model optimization. We employed logistic regression, Kaplan-Meier survival analysis, and receiver operating characteristic (ROC) curves to validate the identified gene signatures.

Results: We identified a gene signature significantly associated with relapse in TNBC patients. The predictive model demonstrated robustness and accuracy, with an area under the ROC curve (AUROC) of 0.9087, sensitivity of 0.8750, and specificity of 0.9231. The Kaplan-Meier survival analysis revealed a strong association between the gene signature and patient relapse, further validated by logistic regression analysis.

Conclusion: This study presents a novel machine learning-based prognostic tool for TNBC, offering significant implications for early detection and personalized treatment. The identified gene signature provides a promising approach for improving the management of TNBC, contributing to the advancement of precision oncology.

基于机器学习的早期三阴性乳腺癌预后基因特征。
目的:本研究旨在开发一种基于机器学习的方法,利用来自亚洲人群的下一代测序数据识别早期三阴性乳腺癌(TNBC)的预后基因特征:我们利用新一代测序数据分析基因表达谱,并确定潜在的生物标志物。我们的方法包括整合各种机器学习技术,包括特征选择和模型优化。我们采用了逻辑回归、Kaplan-Meier生存分析和接收者操作特征曲线(ROC)来验证所确定的基因特征:结果:我们发现了与 TNBC 患者复发密切相关的基因特征。该预测模型具有稳健性和准确性,ROC曲线下面积(AUROC)为0.9087,灵敏度为0.8750,特异性为0.9231。Kaplan-Meier生存分析表明,基因特征与患者复发之间存在密切联系,Logistic回归分析进一步验证了这一点:本研究提出了一种基于机器学习的新型 TNBC 预后工具,对早期检测和个性化治疗具有重要意义。所发现的基因特征为改善 TNBC 的管理提供了一种有前景的方法,有助于精准肿瘤学的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
126
审稿时长
>12 weeks
期刊介绍: Cancer Research and Treatment is a peer-reviewed open access publication of the Korean Cancer Association. It is published quarterly, one volume per year. Abbreviated title is Cancer Res Treat. It accepts manuscripts relevant to experimental and clinical cancer research. Subjects include carcinogenesis, tumor biology, molecular oncology, cancer genetics, tumor immunology, epidemiology, predictive markers and cancer prevention, pathology, cancer diagnosis, screening and therapies including chemotherapy, surgery, radiation therapy, immunotherapy, gene therapy, multimodality treatment and palliative care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信