Clustering-independent estimation of cell abundances in bulk tissues using single-cell RNA-seq data.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Rachael G Aubin, Javier Montelongo, Robert Hu, Elijah Gunther, Patrick Nicodemus, Pablo G Camara
{"title":"Clustering-independent estimation of cell abundances in bulk tissues using single-cell RNA-seq data.","authors":"Rachael G Aubin, Javier Montelongo, Robert Hu, Elijah Gunther, Patrick Nicodemus, Pablo G Camara","doi":"10.1016/j.crmeth.2024.100905","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA sequencing has transformed the study of biological tissues by enabling transcriptomic characterizations of their constituent cell states. Computational methods for gene expression deconvolution use this information to infer the cell composition of related tissues profiled at the bulk level. However, current deconvolution methods are restricted to discrete cell types and have limited power to make inferences about continuous cellular processes such as cell differentiation or immune cell activation. We present ConDecon, a clustering-independent method for inferring the likelihood for each cell in a single-cell dataset to be present in a bulk tissue. ConDecon represents an improvement in phenotypic resolution and functionality with respect to regression-based methods. Using ConDecon, we discover the implication of neurodegenerative microglia inflammatory pathways in the mesenchymal transformation of pediatric ependymoma and characterize their spatial trajectories of activation. The generality of this approach enables the deconvolution of other data modalities, such as bulk ATAC-seq data.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":"4 11","pages":"100905"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell RNA sequencing has transformed the study of biological tissues by enabling transcriptomic characterizations of their constituent cell states. Computational methods for gene expression deconvolution use this information to infer the cell composition of related tissues profiled at the bulk level. However, current deconvolution methods are restricted to discrete cell types and have limited power to make inferences about continuous cellular processes such as cell differentiation or immune cell activation. We present ConDecon, a clustering-independent method for inferring the likelihood for each cell in a single-cell dataset to be present in a bulk tissue. ConDecon represents an improvement in phenotypic resolution and functionality with respect to regression-based methods. Using ConDecon, we discover the implication of neurodegenerative microglia inflammatory pathways in the mesenchymal transformation of pediatric ependymoma and characterize their spatial trajectories of activation. The generality of this approach enables the deconvolution of other data modalities, such as bulk ATAC-seq data.

利用单细胞 RNA-seq 数据对大块组织中的细胞丰度进行独立于聚类的估算。
单细胞 RNA 测序可对生物组织的组成细胞状态进行转录组学特征描述,从而改变了生物组织研究。基因表达解卷积的计算方法利用这些信息来推断相关组织的细胞组成。然而,目前的解卷积方法仅限于离散细胞类型,对细胞分化或免疫细胞活化等连续细胞过程的推断能力有限。我们提出的 ConDecon 是一种独立于聚类的方法,用于推断单细胞数据集中的每个细胞出现在大块组织中的可能性。与基于回归的方法相比,ConDecon 提高了表型的分辨率和功能。利用 ConDecon,我们发现了神经退行性小胶质细胞炎症通路在小儿肾上皮瘤间质转化过程中的影响,并描述了其激活的空间轨迹。这种方法的通用性使其能够对其他数据模式(如大量 ATAC-seq 数据)进行解卷积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信