Fabio Henrique Mendonça Chaim, Lívia Bitencourt Pascoal, Marina Moreira de Castro, Bruna Biazon Palma, Bruno Lima Rodrigues, João José Fagundes, Marciane Milanski, Luiz Roberto Lopes, Raquel Franco Leal
{"title":"The resolvin D2 and omega-3 polyunsaturated fatty acid as a new possible therapeutic approach for inflammatory bowel diseases.","authors":"Fabio Henrique Mendonça Chaim, Lívia Bitencourt Pascoal, Marina Moreira de Castro, Bruna Biazon Palma, Bruno Lima Rodrigues, João José Fagundes, Marciane Milanski, Luiz Roberto Lopes, Raquel Franco Leal","doi":"10.1038/s41598-024-80051-8","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory bowel diseases (IBD) are idiopathic disorders characterized by chronic gastrointestinal inflammation. Given conventional therapies' adverse effects and clinical failures, novel approaches are being investigated. Recent studies have highlighted the role of specialized pro-resolving lipid mediators (SPMs) in the active resolution of chronic inflammation. In this regard, omega-3 fatty acid-derived Resolvin D2 (RvD2) appears to play a protective role in the pathophysiology of IBD. Therefore, we characterized the RvD2 pathway and its receptor expression in the intestinal mucosa of experimental colitis induced by dextran sulfate sodium. We also evaluated the preventive impact of an omega-3-enriched diet and the therapeutic efficacy of RvD2 compared with anti-TNF-α treatment. We found an increase in TNFα and IL22 expression and decreased levels of enzymes involved in RvD2 biosynthesis, such as PLA<sub>2</sub>, 15-LOX, 5-LOX, and its receptor GPR18 in experimental colitis. Omega-3 supplementation reduced the Disease Activity Index (DAI), weight loss, colonic shortening, and inflammation. These results and the increased IL-10 transcriptional levels after RvD2 treatment suggest that this mediator attenuated experimental colitis. These results enhance our understanding of the molecular mechanisms involved in the exacerbated inflammatory response present in experimental colitis and suggest that RvD2 and its omega-3 precursor offer a promising therapeutic approach for IBD.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"28698"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-80051-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Inflammatory bowel diseases (IBD) are idiopathic disorders characterized by chronic gastrointestinal inflammation. Given conventional therapies' adverse effects and clinical failures, novel approaches are being investigated. Recent studies have highlighted the role of specialized pro-resolving lipid mediators (SPMs) in the active resolution of chronic inflammation. In this regard, omega-3 fatty acid-derived Resolvin D2 (RvD2) appears to play a protective role in the pathophysiology of IBD. Therefore, we characterized the RvD2 pathway and its receptor expression in the intestinal mucosa of experimental colitis induced by dextran sulfate sodium. We also evaluated the preventive impact of an omega-3-enriched diet and the therapeutic efficacy of RvD2 compared with anti-TNF-α treatment. We found an increase in TNFα and IL22 expression and decreased levels of enzymes involved in RvD2 biosynthesis, such as PLA2, 15-LOX, 5-LOX, and its receptor GPR18 in experimental colitis. Omega-3 supplementation reduced the Disease Activity Index (DAI), weight loss, colonic shortening, and inflammation. These results and the increased IL-10 transcriptional levels after RvD2 treatment suggest that this mediator attenuated experimental colitis. These results enhance our understanding of the molecular mechanisms involved in the exacerbated inflammatory response present in experimental colitis and suggest that RvD2 and its omega-3 precursor offer a promising therapeutic approach for IBD.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.