Sara Salatin, Maryam Azarfarin, Afsaneh Farjami, Samin Hamidi
{"title":"The simultaneous use of nanovesicles and magnetic nanoparticles for cancer targeting and imaging.","authors":"Sara Salatin, Maryam Azarfarin, Afsaneh Farjami, Samin Hamidi","doi":"10.1080/20415990.2024.2426447","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is increasingly being recognized as a global health issue with considerable unmet medical need. Despite the rapid progression of anticancer pharmaceuticals, there are still significant challenges for the effective management of cancer. In many circumstances, cancer cells are difficult to detect and treat. Combination of nanovesicles (NVs) and magnetic nanoparticles (MNPs), referred as magnetic nanovesicles (MNVs), is now well recognized as a potential theranostic option for improving cancer treatment outcomes and reducing adverse effects. MNVs can be used for monitoring the long-term fate and functional benefits of cancer therapy. Moreover, MNV-mediated hyperthermia mechanism has been explored as a potential technique for triggering cancer cell death, and/or controlled release of laden cargo. In this review, we focus on the unique characteristics of MNVs as a promising avenue for targeted drug delivery, diagnosis, and treatments of cancer or tumor. Moreover, we discuss critical considerations related to the issues raised in this area, which will guide future research toward better anti-cancer therapeutics for clinical applications.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"1-15"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20415990.2024.2426447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer is increasingly being recognized as a global health issue with considerable unmet medical need. Despite the rapid progression of anticancer pharmaceuticals, there are still significant challenges for the effective management of cancer. In many circumstances, cancer cells are difficult to detect and treat. Combination of nanovesicles (NVs) and magnetic nanoparticles (MNPs), referred as magnetic nanovesicles (MNVs), is now well recognized as a potential theranostic option for improving cancer treatment outcomes and reducing adverse effects. MNVs can be used for monitoring the long-term fate and functional benefits of cancer therapy. Moreover, MNV-mediated hyperthermia mechanism has been explored as a potential technique for triggering cancer cell death, and/or controlled release of laden cargo. In this review, we focus on the unique characteristics of MNVs as a promising avenue for targeted drug delivery, diagnosis, and treatments of cancer or tumor. Moreover, we discuss critical considerations related to the issues raised in this area, which will guide future research toward better anti-cancer therapeutics for clinical applications.
期刊介绍:
Delivering therapeutics in a way that is right for the patient - safe, painless, reliable, targeted, efficient and cost effective - is the fundamental aim of scientists working in this area. Correspondingly, this evolving field has already yielded a diversity of delivery methods, including injectors, controlled release formulations, drug eluting implants and transdermal patches. Rapid technological advances and the desire to improve the efficacy and safety profile of existing medications by specific targeting to the site of action, combined with the drive to improve patient compliance, continue to fuel rapid research progress. Furthermore, the emergence of cell-based therapeutics and biopharmaceuticals such as proteins, peptides and nucleotides presents scientists with new and exciting challenges for the application of therapeutic delivery science and technology. Successful delivery strategies increasingly rely upon collaboration across a diversity of fields, including biology, chemistry, pharmacology, nanotechnology, physiology, materials science and engineering. Therapeutic Delivery recognizes the importance of this diverse research platform and encourages the publication of articles that reflect the highly interdisciplinary nature of the field. In a highly competitive industry, Therapeutic Delivery provides the busy researcher with a forum for the rapid publication of original research and critical reviews of all the latest relevant and significant developments, and focuses on how the technological, pharmacological, clinical and physiological aspects come together to successfully deliver modern therapeutics to patients. The journal delivers this essential information in concise, at-a-glance article formats that are readily accessible to the full spectrum of therapeutic delivery researchers.