γ-Radiations induced phytoconstituents variability in the grains of cultivated buckwheat species of Himalayan region.

Nidhi Joshi, Kuldip Chandra Verma, Sanjay Kumar Verma, Pawanesh Tamta
{"title":"γ-Radiations induced phytoconstituents variability in the grains of cultivated buckwheat species of Himalayan region.","authors":"Nidhi Joshi, Kuldip Chandra Verma, Sanjay Kumar Verma, Pawanesh Tamta","doi":"10.1080/09553002.2024.2430246","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Buckwheat is a major traditional crop of hilly regions, capable of growing in adverse climatic conditions. During the survey, it was reported that prolonged consumption of buckwheat leads to digestive problems and numbness. The present study was conducted to study the effect of γ-irradiations on buckwheat to make them suitable for daily consumption.</p><p><strong>Materials and methods: </strong>Buckwheat seeds were irradiated by 100, 200, 300, 400, 500, 600, 700, and 800 Gy doses of γ-radiations, to access the phytoconstituent variability using standard methods.</p><p><strong>Results: </strong>Significant (<i>p</i> < 0.05) increase in total phenol, total flavonoid, total antioxidant activity, rutin, β-carotene, iron, calcium up to 6.23, 16.48, 18.62, 19.06, 8.08, 47.66, 32.74% in common buckwheat and 9.58, 16.66, 39.16, 9.19, 9.00, 53.99, 36.75% in tartary buckwheat was found by increasing doses of γ-radiations up to 800 Gy. Significant decrease was found in phytate, tannin, and oxalate content up to 18.92, 17.95, 15.32% in common buckwheat and 24.73, 19.72, 24.07% in tartary buckwheat.</p><p><strong>Conclusions: </strong>It can be concluded that 800 Gy dose of γ-radiation, maximally increased the nutritional value by significant (<i>p</i> < 0.05) increase in nutrients and their bioavailability. This makes buckwheat more amenable for daily consumption to fulfill RDA, by Himalayan population depending on traditional foods without any digestive problem. Furthermore, significant increase in rutin by γ-radiations will be useful to fulfill the demand of cosmetic and pharmaceutical industries. But minimization of reduction loss for some nutrients by γ-radiations is the thrust area for future research.</p>","PeriodicalId":94057,"journal":{"name":"International journal of radiation biology","volume":" ","pages":"73-84"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of radiation biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09553002.2024.2430246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Buckwheat is a major traditional crop of hilly regions, capable of growing in adverse climatic conditions. During the survey, it was reported that prolonged consumption of buckwheat leads to digestive problems and numbness. The present study was conducted to study the effect of γ-irradiations on buckwheat to make them suitable for daily consumption.

Materials and methods: Buckwheat seeds were irradiated by 100, 200, 300, 400, 500, 600, 700, and 800 Gy doses of γ-radiations, to access the phytoconstituent variability using standard methods.

Results: Significant (p < 0.05) increase in total phenol, total flavonoid, total antioxidant activity, rutin, β-carotene, iron, calcium up to 6.23, 16.48, 18.62, 19.06, 8.08, 47.66, 32.74% in common buckwheat and 9.58, 16.66, 39.16, 9.19, 9.00, 53.99, 36.75% in tartary buckwheat was found by increasing doses of γ-radiations up to 800 Gy. Significant decrease was found in phytate, tannin, and oxalate content up to 18.92, 17.95, 15.32% in common buckwheat and 24.73, 19.72, 24.07% in tartary buckwheat.

Conclusions: It can be concluded that 800 Gy dose of γ-radiation, maximally increased the nutritional value by significant (p < 0.05) increase in nutrients and their bioavailability. This makes buckwheat more amenable for daily consumption to fulfill RDA, by Himalayan population depending on traditional foods without any digestive problem. Furthermore, significant increase in rutin by γ-radiations will be useful to fulfill the demand of cosmetic and pharmaceutical industries. But minimization of reduction loss for some nutrients by γ-radiations is the thrust area for future research.

喜马拉雅地区栽培荞麦品种谷粒中的γ射线诱导植物成分变异。
目的:荞麦是丘陵地区的一种主要传统作物,能够在恶劣的气候条件下生长。据调查,长期食用荞麦会导致消化不良和麻木。本研究旨在研究γ-辐照对荞麦的影响,使其适合日常食用:荞麦种子经 100、200、300、400、500、600、700 和 800 Gy γ 辐射剂量照射后,采用标准方法检测植物成分的变化:结果:显著(p可以得出结论,800 Gy 剂量的γ射线最大程度地提高了营养价值,显著(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信