Dan Liu, Francesca Young, Kieran D Lamb, David L Robertson, Ke Yuan
{"title":"Prediction of virus-host associations using protein language models and multiple instance learning.","authors":"Dan Liu, Francesca Young, Kieran D Lamb, David L Robertson, Ke Yuan","doi":"10.1371/journal.pcbi.1012597","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting virus-host associations is essential to determine the specific host species that viruses interact with, and discover if new viruses infect humans and animals. Currently, the host of the majority of viruses is unknown, particularly in microbiomes. To address this challenge, we introduce EvoMIL, a deep learning method that predicts the host species for viruses from viral sequences only. It also identifies important viral proteins that significantly contribute to host prediction. The method combines a pre-trained large protein language model (ESM) and attention-based multiple instance learning to allow protein-orientated predictions. Our results show that protein embeddings capture stronger predictive signals than sequence composition features, including amino acids, physiochemical properties, and DNA k-mers. In multi-host prediction tasks, EvoMIL achieves median F1 score improvements of 10.8%, 16.2%, and 4.9% in prokaryotic hosts, and 1.7%, 6.6% and 11.5% in eukaryotic hosts. EvoMIL binary classifiers achieve impressive AUC over 0.95 for all prokaryotic hosts and range from roughly 0.8 to 0.9 for eukaryotic hosts. Furthermore, EvoMIL identifies important proteins in the prediction task. We found them capturing key functions in virus-host specificity.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"20 11","pages":"e1012597"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012597","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting virus-host associations is essential to determine the specific host species that viruses interact with, and discover if new viruses infect humans and animals. Currently, the host of the majority of viruses is unknown, particularly in microbiomes. To address this challenge, we introduce EvoMIL, a deep learning method that predicts the host species for viruses from viral sequences only. It also identifies important viral proteins that significantly contribute to host prediction. The method combines a pre-trained large protein language model (ESM) and attention-based multiple instance learning to allow protein-orientated predictions. Our results show that protein embeddings capture stronger predictive signals than sequence composition features, including amino acids, physiochemical properties, and DNA k-mers. In multi-host prediction tasks, EvoMIL achieves median F1 score improvements of 10.8%, 16.2%, and 4.9% in prokaryotic hosts, and 1.7%, 6.6% and 11.5% in eukaryotic hosts. EvoMIL binary classifiers achieve impressive AUC over 0.95 for all prokaryotic hosts and range from roughly 0.8 to 0.9 for eukaryotic hosts. Furthermore, EvoMIL identifies important proteins in the prediction task. We found them capturing key functions in virus-host specificity.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.