Panpan Chen, Chi Zhang, Bao Li, Li Tong, LinYuan Wang, ShuXiao Ma, Long Cao, ZiYa Yu, Bin Yan
{"title":"An fMRI dataset in response to large-scale short natural dynamic facial expression videos.","authors":"Panpan Chen, Chi Zhang, Bao Li, Li Tong, LinYuan Wang, ShuXiao Ma, Long Cao, ZiYa Yu, Bin Yan","doi":"10.1038/s41597-024-04088-0","DOIUrl":null,"url":null,"abstract":"<p><p>Facial expression is among the most natural methods for human beings to convey their emotional information in daily life. Although the neural mechanisms of facial expression have been extensively studied employing lab-controlled images and a small number of lab-controlled video stimuli, how the human brain processes natural dynamic facial expression videos still needs to be investigated. To our knowledge, this type of data specifically on large-scale natural facial expression videos is currently missing. We describe here the natural Facial Expressions Dataset (NFED), an fMRI dataset including responses to 1,320 short (3-second) natural facial expression video clips. These video clips are annotated with three types of labels: emotion, gender, and ethnicity, along with accompanying metadata. We validate that the dataset has good quality within and across participants and, notably, can capture temporal and spatial stimuli features. NFED provides researchers with fMRI data for understanding of the visual processing of large number of natural facial expression videos.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1247"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576863/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04088-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Facial expression is among the most natural methods for human beings to convey their emotional information in daily life. Although the neural mechanisms of facial expression have been extensively studied employing lab-controlled images and a small number of lab-controlled video stimuli, how the human brain processes natural dynamic facial expression videos still needs to be investigated. To our knowledge, this type of data specifically on large-scale natural facial expression videos is currently missing. We describe here the natural Facial Expressions Dataset (NFED), an fMRI dataset including responses to 1,320 short (3-second) natural facial expression video clips. These video clips are annotated with three types of labels: emotion, gender, and ethnicity, along with accompanying metadata. We validate that the dataset has good quality within and across participants and, notably, can capture temporal and spatial stimuli features. NFED provides researchers with fMRI data for understanding of the visual processing of large number of natural facial expression videos.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.