Sara I Walker, Cole Mathis, Stuart Marshall, Leroy Cronin
{"title":"Experimentally measured assembly indices are required to determine the threshold for life.","authors":"Sara I Walker, Cole Mathis, Stuart Marshall, Leroy Cronin","doi":"10.1098/rsif.2024.0367","DOIUrl":null,"url":null,"abstract":"<p><p>Assembly theory (AT) aims to distinguish living from non-living systems by explaining and quantifying selection and evolution. The theory proposes that the degree of assembly depends on the number of complex objects, with complexity measured using a combination of the object's assembly index (AI) and its abundance. We previously provided experimental evidence supporting AT's predictive power, finding that abiotic systems do not randomly produce organic molecules with an AI greater than approximately 15 in detectable amounts. Hazen <i>et al</i>. (Hazen <i>et al</i>. 2024 <i>J. R. Soc. Interface</i> <b>21</b>, 20230632. (doi:10.1098/rsif.2023.0632)) proposed inorganic molecules that theoretically have AIs greater than 15, suggesting similar complexity to biological molecules. However, our AIs are experimentally measured for organic, covalently bonded molecules, whereas Hazen's are theoretical, derived from crystal structures of charged units that are not isolable in solution. This distinction underscores the challenge in experimentally validating theoretical AIs.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 220","pages":"20240367"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576842/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0367","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Assembly theory (AT) aims to distinguish living from non-living systems by explaining and quantifying selection and evolution. The theory proposes that the degree of assembly depends on the number of complex objects, with complexity measured using a combination of the object's assembly index (AI) and its abundance. We previously provided experimental evidence supporting AT's predictive power, finding that abiotic systems do not randomly produce organic molecules with an AI greater than approximately 15 in detectable amounts. Hazen et al. (Hazen et al. 2024 J. R. Soc. Interface21, 20230632. (doi:10.1098/rsif.2023.0632)) proposed inorganic molecules that theoretically have AIs greater than 15, suggesting similar complexity to biological molecules. However, our AIs are experimentally measured for organic, covalently bonded molecules, whereas Hazen's are theoretical, derived from crystal structures of charged units that are not isolable in solution. This distinction underscores the challenge in experimentally validating theoretical AIs.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.