Mayuka Nakajima , Neha Kapate , John R. Clegg , Mayumi Ikeda-Imafuku , Kyung Soo Park , Ninad Kumbhojkar , Vinny Chandran Suja , Supriya Prakash , Lily Li-Wen Wang , Koichi Tabeta , Samir Mitragotri
{"title":"Backpack-carrying macrophage immunotherapy for periodontitis","authors":"Mayuka Nakajima , Neha Kapate , John R. Clegg , Mayumi Ikeda-Imafuku , Kyung Soo Park , Ninad Kumbhojkar , Vinny Chandran Suja , Supriya Prakash , Lily Li-Wen Wang , Koichi Tabeta , Samir Mitragotri","doi":"10.1016/j.jconrel.2024.11.037","DOIUrl":null,"url":null,"abstract":"<div><div>Cell immunotherapy is a promising therapeutic modality to combat unmet medical needs. Macrophages offer a prominent cell therapy modality since their phenotypic plasticity allows them to perform a variety of roles including defending against pathogens, inducing/suppressing adaptive immunity, and aiding in wound healing. At the same time, this plasticity is a major hurdle in implementation of macrophage therapy. This hurdle can be overcome by cellular backpacks (BPs), discoidal particles that adhere on the macrophage surface and regulate M1/M2 phenotypic shift in an environment-independent manner. In this study, we engineered IL-4 BPs for maintaining macrophages in the M2 phenotype to regulate excess inflammation in periodontitis, a major oral infectious disease. IL-4 BPs induced and maintained M2 phenotype in macrophages <em>in vitro</em> for several days. After injection of macrophages carrying IL-4 BPs into the gingiva, the cells stayed in the tissue for over 5 days and maintained the M2 phenotype in the disease sites. Furthermore, treatment with IL-4 BP-macrophages significantly suppressed the disease progression. Altogether, a treatment with BP-carrying macrophages offers a promising local therapy against periodontitis.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"377 ","pages":"Pages 315-323"},"PeriodicalIF":10.5000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016836592400782X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cell immunotherapy is a promising therapeutic modality to combat unmet medical needs. Macrophages offer a prominent cell therapy modality since their phenotypic plasticity allows them to perform a variety of roles including defending against pathogens, inducing/suppressing adaptive immunity, and aiding in wound healing. At the same time, this plasticity is a major hurdle in implementation of macrophage therapy. This hurdle can be overcome by cellular backpacks (BPs), discoidal particles that adhere on the macrophage surface and regulate M1/M2 phenotypic shift in an environment-independent manner. In this study, we engineered IL-4 BPs for maintaining macrophages in the M2 phenotype to regulate excess inflammation in periodontitis, a major oral infectious disease. IL-4 BPs induced and maintained M2 phenotype in macrophages in vitro for several days. After injection of macrophages carrying IL-4 BPs into the gingiva, the cells stayed in the tissue for over 5 days and maintained the M2 phenotype in the disease sites. Furthermore, treatment with IL-4 BP-macrophages significantly suppressed the disease progression. Altogether, a treatment with BP-carrying macrophages offers a promising local therapy against periodontitis.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.