{"title":"Phenomics Demonstrates Cytokines Additive Induction of Epithelial to Mesenchymal Transition.","authors":"Alphonse Boché, Alexandra Landras, Mathieu Morel, Sabrina Kellouche, Franck Carreiras, Ambroise Lambert","doi":"10.1002/jcp.31491","DOIUrl":null,"url":null,"abstract":"<p><p>Epithelial to mesenchymal transition (EMT) is highly plastic with a programme where cells lose adhesion and become more motile. EMT heterogeneity is one of the factors for disease progression and chemoresistance in cancer. Omics characterisations are costly and challenging to use. We developed single cell phenomics with easy to use wide-field fluorescence microscopy. We analyse over 70,000 cells and combined 53 features. Our simplistic pipeline allows efficient tracking of EMT plasticity, with a single statistical metric. We discriminate four high EMT plasticity cancer cell lines along the EMT spectrum. We test two cytokines, inducing EMT in all cell lines, alone or in combination. The single cell EMT metrics demonstrate the additive effect of cytokines combination on EMT independently of cell line EMT spectrum. The effects of cytokines are also observed at the front of migration during wound healing assay. Single cell phenomics is uniquely suited to characterise the cellular heterogeneity in response to complex microenvironment and show potential for drug testing assays.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jcp.31491","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Epithelial to mesenchymal transition (EMT) is highly plastic with a programme where cells lose adhesion and become more motile. EMT heterogeneity is one of the factors for disease progression and chemoresistance in cancer. Omics characterisations are costly and challenging to use. We developed single cell phenomics with easy to use wide-field fluorescence microscopy. We analyse over 70,000 cells and combined 53 features. Our simplistic pipeline allows efficient tracking of EMT plasticity, with a single statistical metric. We discriminate four high EMT plasticity cancer cell lines along the EMT spectrum. We test two cytokines, inducing EMT in all cell lines, alone or in combination. The single cell EMT metrics demonstrate the additive effect of cytokines combination on EMT independently of cell line EMT spectrum. The effects of cytokines are also observed at the front of migration during wound healing assay. Single cell phenomics is uniquely suited to characterise the cellular heterogeneity in response to complex microenvironment and show potential for drug testing assays.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.