De novo missense variants in the PP2A regulatory subunit PPP2R2B in a neurodevelopmental syndrome: potential links to mitochondrial dynamics and spinocerebellar ataxias.
Priyanka Sandal, Chian Ju Jong, Ronald A Merrill, Grace J Kollman, Austin H Paden, Eric G Bend, Jennifer Sullivan, Rebecca C Spillmann, Vandana Shashi, Anneke T Vulto-van Silfhout, Rolph Pfundt, Bert B A de Vries, Pan P Li, Louise S Bicknell, Stefan Strack
{"title":"De novo missense variants in the PP2A regulatory subunit PPP2R2B in a neurodevelopmental syndrome: potential links to mitochondrial dynamics and spinocerebellar ataxias.","authors":"Priyanka Sandal, Chian Ju Jong, Ronald A Merrill, Grace J Kollman, Austin H Paden, Eric G Bend, Jennifer Sullivan, Rebecca C Spillmann, Vandana Shashi, Anneke T Vulto-van Silfhout, Rolph Pfundt, Bert B A de Vries, Pan P Li, Louise S Bicknell, Stefan Strack","doi":"10.1093/hmg/ddae166","DOIUrl":null,"url":null,"abstract":"<p><p>The heterotrimeric protein phosphatase 2A (PP2A) complex catalyzes about half of Ser/Thr dephosphorylations in eukaryotic cells. A CAG repeat expansion in the neuron-specific protein PP2A regulatory subunit PPP2R2B gene causes spinocerebellar ataxia type 12 (SCA12). We established five monoallelic missense variants in PPP2R2B (four confirmed as de novo) as a cause of intellectual disability with developmental delay (R149P, T246K, N310K, E37K, I427T). In addition to moderate to severe intellectual disability and developmental delay, affected individuals presented with seizures, microcephaly, aggression, hypotonia, as well as broad-based or stiff gait. We used biochemical and cellular assays, including a novel luciferase complementation assay to interrogate PP2A holoenzyme assembly and activity, as well as deregulated mitochondrial dynamics as possible pathogenic mechanisms. Cell-based assays documented impaired ability of PPP2R2B missense variants to incorporate into the PP2A holoenzyme, localize to mitochondria, induce fission of neuronal mitochondria, and dephosphorylate the mitochondrial fission enzyme dynamin-related protein 1. AlphaMissense-based pathogenicity prediction suggested that an additional seven unreported missense variants may be pathogenic. In conclusion, our studies identify loss-of-function at the PPP2R2B locus as the basis for syndromic intellectual disability with developmental delay. They also extend PPP2R2B-related pathologies from neurodegenerative (SCA12) to neurodevelopmental disorders and suggests that altered mitochondrial dynamics may contribute to mechanisms.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddae166","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The heterotrimeric protein phosphatase 2A (PP2A) complex catalyzes about half of Ser/Thr dephosphorylations in eukaryotic cells. A CAG repeat expansion in the neuron-specific protein PP2A regulatory subunit PPP2R2B gene causes spinocerebellar ataxia type 12 (SCA12). We established five monoallelic missense variants in PPP2R2B (four confirmed as de novo) as a cause of intellectual disability with developmental delay (R149P, T246K, N310K, E37K, I427T). In addition to moderate to severe intellectual disability and developmental delay, affected individuals presented with seizures, microcephaly, aggression, hypotonia, as well as broad-based or stiff gait. We used biochemical and cellular assays, including a novel luciferase complementation assay to interrogate PP2A holoenzyme assembly and activity, as well as deregulated mitochondrial dynamics as possible pathogenic mechanisms. Cell-based assays documented impaired ability of PPP2R2B missense variants to incorporate into the PP2A holoenzyme, localize to mitochondria, induce fission of neuronal mitochondria, and dephosphorylate the mitochondrial fission enzyme dynamin-related protein 1. AlphaMissense-based pathogenicity prediction suggested that an additional seven unreported missense variants may be pathogenic. In conclusion, our studies identify loss-of-function at the PPP2R2B locus as the basis for syndromic intellectual disability with developmental delay. They also extend PPP2R2B-related pathologies from neurodegenerative (SCA12) to neurodevelopmental disorders and suggests that altered mitochondrial dynamics may contribute to mechanisms.
期刊介绍:
Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include:
the molecular basis of human genetic disease
developmental genetics
cancer genetics
neurogenetics
chromosome and genome structure and function
therapy of genetic disease
stem cells in human genetic disease and therapy, including the application of iPS cells
genome-wide association studies
mouse and other models of human diseases
functional genomics
computational genomics
In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.