Petra Záhonyi, Áron Gábor Müncz, Anna Haraszti, Zsombor Kristóf Nagy, István Csontos, György Marosi, Edina Szabó
{"title":"Continuous twin-screw melt granulation of drug-loaded electrospun fibers.","authors":"Petra Záhonyi, Áron Gábor Müncz, Anna Haraszti, Zsombor Kristóf Nagy, István Csontos, György Marosi, Edina Szabó","doi":"10.1016/j.ejpb.2024.114580","DOIUrl":null,"url":null,"abstract":"<p><p>Electrospinning (ES) is a promising continuous formulation strategy to produce amorphous solid dispersions (ASDs) and thereby improve the dissolution of poorly water-soluble drugs. However, processing the electrospun material into solid dosage forms (e.g. tablets) is challenging due to the poor flow properties. In this research, continuous twin-screw melt granulation was applied to improve the flowability of the fibers and therefore ease the further processing steps. During this work, two ASD compositions were investigated: one containing 60 % poly-vinylpyrrolidone-vinyl acetate 6:4 copolymer and 40 % itraconazole (ITR), and another one containing hydroxypropyl methylcellulose (HPMC) and ITR in the same ratio. Both fiber compositions were granulated with polyethene glycol as the binder material, while the effects of the process parameters were examined. The application of higher granulation temperature and screw configurations with increased shear forces compromised the fibrous structure, induced crystallization of the ASD, and decreased the dissolution. However, the stability of the ITR-HPMC fibers proved to be higher as their granulation at 60 °C led to granules with adequate flow properties and dissolution. Moreover, tablets with fewer excipients were pressed from them, resulting in a 34 % reduction in weight. Consequently, this process can complement ES technology and facilitate its industrial implementation.</p>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114580"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejpb.2024.114580","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrospinning (ES) is a promising continuous formulation strategy to produce amorphous solid dispersions (ASDs) and thereby improve the dissolution of poorly water-soluble drugs. However, processing the electrospun material into solid dosage forms (e.g. tablets) is challenging due to the poor flow properties. In this research, continuous twin-screw melt granulation was applied to improve the flowability of the fibers and therefore ease the further processing steps. During this work, two ASD compositions were investigated: one containing 60 % poly-vinylpyrrolidone-vinyl acetate 6:4 copolymer and 40 % itraconazole (ITR), and another one containing hydroxypropyl methylcellulose (HPMC) and ITR in the same ratio. Both fiber compositions were granulated with polyethene glycol as the binder material, while the effects of the process parameters were examined. The application of higher granulation temperature and screw configurations with increased shear forces compromised the fibrous structure, induced crystallization of the ASD, and decreased the dissolution. However, the stability of the ITR-HPMC fibers proved to be higher as their granulation at 60 °C led to granules with adequate flow properties and dissolution. Moreover, tablets with fewer excipients were pressed from them, resulting in a 34 % reduction in weight. Consequently, this process can complement ES technology and facilitate its industrial implementation.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.