Luchi Li, Qonita Kurnia Anjani, Aaron R J Hutton, Mingshan Li, Akmal Hidayat Bin Sabri, Lalitkumar Vora, Yara A Naser, Yushi Tao, Helen O McCarthy, Ryan F Donnelly
{"title":"Evaluation of physical and chemical modifications to drug reservoirs for stimuli-responsive microneedles.","authors":"Luchi Li, Qonita Kurnia Anjani, Aaron R J Hutton, Mingshan Li, Akmal Hidayat Bin Sabri, Lalitkumar Vora, Yara A Naser, Yushi Tao, Helen O McCarthy, Ryan F Donnelly","doi":"10.1007/s13346-024-01737-0","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogel-forming microneedle (MN) arrays are minimally-invasive devices that can penetrate the stratum corneum, the main barrier to topical drug application, without causing pain. However, drug delivery using hydrogel-forming MN arrays tends to be relatively slow compared to rapid drug delivery using conventional needles and syringes. Therefore, in this work, for the first time, different physical and chemical delivery enhancement methods were employed in combination with PVA-based hydrogel-forming MN arrays. Using a model drug, ibuprofen (IBU) sodium, the designed systems were assessed in terms of the extent of transdermal delivery. Iontophoresis (ITP) and heat-assisted drug delivery technology were investigated as physical permeation enhancement techniques. Ex vivo studies demonstrated that the ITP (0.5 mA/cm<sup>2</sup>)-mediated combination strategy significantly enhanced the transdermal permeation of IBU sodium over the first 6 h (~ 5.11 mg) when compared to MN alone (~ 1.63 mg) (p < 0.05). In contrast, heat-assisted technology showed almost no promoting effect on transdermal delivery. Furthermore, IBU sodium-containing rapidly dissolving lyophilised and effervescent reservoirs, classified as chemical modification methods, were prepared. Both strategies achieved rapid and effective ex vivo IBU sodium permeation, equating to ~ 78% (30.66 mg) and ~ 71% (28.43 mg) from lyophilised and effervescent reservoirs, respectively. Moreover, in vivo pharmacokinetic studies showed that the IBU sodium plasma concentration within lyophilised and effervescent groups reached a maximum concentration (C<sub>max</sub>) at 4 h (~ 282.15 µg/mL) and 6 h (~ 140.81 µg/mL), respectively. These strategies not only provided rapid achievement of therapeutic levels (10-15 µg/ml), but also resulted in sustained release of IBU sodium for at least 48 h, which could effectively reduce the frequency of administration, thereby improving patient compliance and reducing side effects of IBU sodium.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-024-01737-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogel-forming microneedle (MN) arrays are minimally-invasive devices that can penetrate the stratum corneum, the main barrier to topical drug application, without causing pain. However, drug delivery using hydrogel-forming MN arrays tends to be relatively slow compared to rapid drug delivery using conventional needles and syringes. Therefore, in this work, for the first time, different physical and chemical delivery enhancement methods were employed in combination with PVA-based hydrogel-forming MN arrays. Using a model drug, ibuprofen (IBU) sodium, the designed systems were assessed in terms of the extent of transdermal delivery. Iontophoresis (ITP) and heat-assisted drug delivery technology were investigated as physical permeation enhancement techniques. Ex vivo studies demonstrated that the ITP (0.5 mA/cm2)-mediated combination strategy significantly enhanced the transdermal permeation of IBU sodium over the first 6 h (~ 5.11 mg) when compared to MN alone (~ 1.63 mg) (p < 0.05). In contrast, heat-assisted technology showed almost no promoting effect on transdermal delivery. Furthermore, IBU sodium-containing rapidly dissolving lyophilised and effervescent reservoirs, classified as chemical modification methods, were prepared. Both strategies achieved rapid and effective ex vivo IBU sodium permeation, equating to ~ 78% (30.66 mg) and ~ 71% (28.43 mg) from lyophilised and effervescent reservoirs, respectively. Moreover, in vivo pharmacokinetic studies showed that the IBU sodium plasma concentration within lyophilised and effervescent groups reached a maximum concentration (Cmax) at 4 h (~ 282.15 µg/mL) and 6 h (~ 140.81 µg/mL), respectively. These strategies not only provided rapid achievement of therapeutic levels (10-15 µg/ml), but also resulted in sustained release of IBU sodium for at least 48 h, which could effectively reduce the frequency of administration, thereby improving patient compliance and reducing side effects of IBU sodium.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.