Image-based deep learning model to predict stoma-site incisional hernia in patients with temporary ileostomy: A retrospective study.

IF 4.6 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
iScience Pub Date : 2024-10-22 eCollection Date: 2024-11-15 DOI:10.1016/j.isci.2024.111235
Zhongyi Dong, Jianhua Cai, Haigang Geng, Bo Ni, Mengqing Yuan, Yeqian Zhang, Xiang Xia, Haoyu Zhang, Jie Zhang, Chunchao Zhu, Un Wai Choi, Aksara Regmi, Cheok I Chan, Cara Kou Yan, Yan Gu, Hui Cao, Zizhen Zhang
{"title":"Image-based deep learning model to predict stoma-site incisional hernia in patients with temporary ileostomy: A retrospective study.","authors":"Zhongyi Dong, Jianhua Cai, Haigang Geng, Bo Ni, Mengqing Yuan, Yeqian Zhang, Xiang Xia, Haoyu Zhang, Jie Zhang, Chunchao Zhu, Un Wai Choi, Aksara Regmi, Cheok I Chan, Cara Kou Yan, Yan Gu, Hui Cao, Zizhen Zhang","doi":"10.1016/j.isci.2024.111235","DOIUrl":null,"url":null,"abstract":"<p><p>The prophylactic implantation of biological mesh can effectively prevent the occurrence of stoma-site incisional hernia (SSIH) in patients undergoing stoma retraction. Therefore, our study prospectively established and validated a mixed model, which combined radiomics, stepwise regression, and deep learning for the prediction of SSIH in patients with temporary ileostomy. The mixed model showed good discrimination of the SSIH patients on all cohorts, which outperformed deep learning, radiomics, and clinical models alone (overall area under the curve [AUC]: 0.947 in the primary cohort, 0.876 in the external validation cohort 1, and 0.776 in the external validation cohort 2). Moreover, the sensitivity, specificity, and precision for predicting SSIH were improved in the mixed model. Thus, the mixed model can provide more information for SSIH precaution and clinical decision-making.</p>","PeriodicalId":342,"journal":{"name":"iScience","volume":"27 11","pages":"111235"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574812/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.isci.2024.111235","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/15 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The prophylactic implantation of biological mesh can effectively prevent the occurrence of stoma-site incisional hernia (SSIH) in patients undergoing stoma retraction. Therefore, our study prospectively established and validated a mixed model, which combined radiomics, stepwise regression, and deep learning for the prediction of SSIH in patients with temporary ileostomy. The mixed model showed good discrimination of the SSIH patients on all cohorts, which outperformed deep learning, radiomics, and clinical models alone (overall area under the curve [AUC]: 0.947 in the primary cohort, 0.876 in the external validation cohort 1, and 0.776 in the external validation cohort 2). Moreover, the sensitivity, specificity, and precision for predicting SSIH were improved in the mixed model. Thus, the mixed model can provide more information for SSIH precaution and clinical decision-making.

基于图像的深度学习模型预测临时回肠造口术患者的造口切口疝:一项回顾性研究。
在接受造口回缩术的患者中,预防性植入生物网片可有效预防造口部位切口疝(SSIH)的发生。因此,我们的研究前瞻性地建立并验证了一个混合模型,该模型结合了放射组学、逐步回归和深度学习,用于预测临时回肠造口患者的SSIH。该混合模型对所有队列中的 SSIH 患者都显示出良好的分辨能力,优于单独的深度学习、放射组学和临床模型(总体曲线下面积 [AUC]:主队列为 0.947,副队列为 0.947):初级队列为 0.947,外部验证队列 1 为 0.876,外部验证队列 2 为 0.776)。此外,混合模型预测 SSIH 的灵敏度、特异性和精确度都有所提高。因此,混合模型可为 SSIH 预防和临床决策提供更多信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
iScience
iScience Multidisciplinary-Multidisciplinary
CiteScore
7.20
自引率
1.70%
发文量
1972
审稿时长
6 weeks
期刊介绍: Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results. We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信