O-GlcNAcylation modulates expression and abundance of N-glycosylation machinery in an inherited glycosylation disorder.

IF 7.5 1区 生物学 Q1 CELL BIOLOGY
Courtney Matheny-Rabun, Sneha S Mokashi, Silvia Radenkovic, Kali Wiggins, Lynn Dukes-Rimsky, Peggi Angel, Bart Ghesquiere, Tamas Kozicz, Richard Steet, Eva Morava, Heather Flanagan-Steet
{"title":"O-GlcNAcylation modulates expression and abundance of N-glycosylation machinery in an inherited glycosylation disorder.","authors":"Courtney Matheny-Rabun, Sneha S Mokashi, Silvia Radenkovic, Kali Wiggins, Lynn Dukes-Rimsky, Peggi Angel, Bart Ghesquiere, Tamas Kozicz, Richard Steet, Eva Morava, Heather Flanagan-Steet","doi":"10.1016/j.celrep.2024.114976","DOIUrl":null,"url":null,"abstract":"<p><p>Core components of the N-glycosylation pathway are known, but the metabolic and post-translational mechanisms regulating this pathway in normal and disease states remain elusive. Using a multi-omic approach in zebrafish, we discovered a mechanism whereby O-GlcNAcylation directly impacts the expression and abundance of two rate-limiting proteins in the N-linked glycosylation pathway. We show in a model of an inherited glycosylation disorder PMM2-CDG, congenital disorders of glycosylation that phosphomannomutase deficiency is associated with increased levels of UDP-GlcNAc and protein O-GlcNAcylation. O-GlcNAc modification increases the transcript and protein abundance of both NgBR and Dpagt1 in pmm2<sup>m/m</sup> mutants. Modulating O-GlcNAc levels, NgBR abundance, or Dpagt1 activity exacerbated the cartilage phenotypes in pmm2 mutants, suggesting that O-GlcNAc-mediated increases in the N-glycosylation machinery are protective. These findings highlight nucleotide-sugar donors as metabolic sensors that regulate two spatially separated glycosylation pathways, demonstrating how their coordination is relevant to disease severity in the most common congenital disorder of glycosylation.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 11","pages":"114976"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.114976","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Core components of the N-glycosylation pathway are known, but the metabolic and post-translational mechanisms regulating this pathway in normal and disease states remain elusive. Using a multi-omic approach in zebrafish, we discovered a mechanism whereby O-GlcNAcylation directly impacts the expression and abundance of two rate-limiting proteins in the N-linked glycosylation pathway. We show in a model of an inherited glycosylation disorder PMM2-CDG, congenital disorders of glycosylation that phosphomannomutase deficiency is associated with increased levels of UDP-GlcNAc and protein O-GlcNAcylation. O-GlcNAc modification increases the transcript and protein abundance of both NgBR and Dpagt1 in pmm2m/m mutants. Modulating O-GlcNAc levels, NgBR abundance, or Dpagt1 activity exacerbated the cartilage phenotypes in pmm2 mutants, suggesting that O-GlcNAc-mediated increases in the N-glycosylation machinery are protective. These findings highlight nucleotide-sugar donors as metabolic sensors that regulate two spatially separated glycosylation pathways, demonstrating how their coordination is relevant to disease severity in the most common congenital disorder of glycosylation.

O-GlcNAcylation调节遗传性糖基化障碍中N-糖基化机制的表达和丰度。
N-糖基化途径的核心成分是已知的,但在正常和疾病状态下调节该途径的代谢和翻译后机制仍然难以捉摸。利用斑马鱼的多组学方法,我们发现了 O-GlcNAcylation 直接影响 N-连接糖基化途径中两个限速蛋白的表达和丰度的机制。我们在一个遗传性糖基化障碍 PMM2-CDG(先天性糖基化障碍)模型中发现,磷酸甘露糖苷酶缺乏与 UDP-GlcNAc 和蛋白质 O-GlcNAcylation 水平的增加有关。在 pmm2m/m 突变体中,O-GlcNAc 修饰会增加 NgBR 和 Dpagt1 的转录本和蛋白质丰度。调节O-GlcNAc水平、NgBR丰度或Dpagt1活性会加剧pmm2突变体的软骨表型,这表明O-GlcNAc介导的N-糖基化机制的增加具有保护作用。这些发现突显了核苷酸-糖供体作为代谢传感器调节两个空间上分离的糖基化途径,证明了它们之间的协调如何与最常见的先天性糖基化紊乱的疾病严重程度相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell reports
Cell reports CELL BIOLOGY-
CiteScore
13.80
自引率
1.10%
发文量
1305
审稿时长
77 days
期刊介绍: Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted. The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership. The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信