{"title":"Links between brain structure and function in children with autism spectrum disorder by parallel independent component analysis.","authors":"Huibin Lu, Sha Wang, Le Gao, Zaifa Xue, Jing Liu, Xiaoxia Niu, Rongjuan Zhou, Xiaonan Guo","doi":"10.1007/s11682-024-00957-9","DOIUrl":null,"url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) is a neurodevelopmental disorder accompanied by structural and functional changes in the brain. However, the relationship between brain structure and function in children with ASD remains largely obscure. In the current study, parallel independent component analysis (pICA) was performed to identify inter-modality associations by drawing on information from different modalities. Structural and resting-state functional magnetic resonance imaging data from 105 children with ASD and 102 typically developing children (obtained from the open-access Autism Brain Imaging Data Exchange database) were combined through the pICA framework. Features of structural and functional modalities were represented by the voxel-based morphometry (VBM) and amplitude of low-frequency fluctuations (ALFF), respectively. The relationship between the structural and functional components derived from the pICA was investigated by Pearson's correlation analysis, and between-group differences in these components were analyzed through the two-sample t-test. Finally, multivariate support vector regression analysis was used to analyze the relationship between the structural/functional components and Autism Diagnostic Observation Schedule (ADOS) subscores in the ASD group. This study found a significant association between VBM and ALFF components in ASD. Significant between-group differences were detected in the loading coefficients of the VBM component. Furthermore, the ALFF component loading coefficients predicted the subscores of communication and repetitive stereotypic behaviors of the ADOS. Likewise, the VBM component loading coefficients predicted the ADOS communication subscore in ASD. These findings provide evidence of a link between brain function and structure, yielding new insights into the neural mechanisms of ASD.</p>","PeriodicalId":9192,"journal":{"name":"Brain Imaging and Behavior","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Imaging and Behavior","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11682-024-00957-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder accompanied by structural and functional changes in the brain. However, the relationship between brain structure and function in children with ASD remains largely obscure. In the current study, parallel independent component analysis (pICA) was performed to identify inter-modality associations by drawing on information from different modalities. Structural and resting-state functional magnetic resonance imaging data from 105 children with ASD and 102 typically developing children (obtained from the open-access Autism Brain Imaging Data Exchange database) were combined through the pICA framework. Features of structural and functional modalities were represented by the voxel-based morphometry (VBM) and amplitude of low-frequency fluctuations (ALFF), respectively. The relationship between the structural and functional components derived from the pICA was investigated by Pearson's correlation analysis, and between-group differences in these components were analyzed through the two-sample t-test. Finally, multivariate support vector regression analysis was used to analyze the relationship between the structural/functional components and Autism Diagnostic Observation Schedule (ADOS) subscores in the ASD group. This study found a significant association between VBM and ALFF components in ASD. Significant between-group differences were detected in the loading coefficients of the VBM component. Furthermore, the ALFF component loading coefficients predicted the subscores of communication and repetitive stereotypic behaviors of the ADOS. Likewise, the VBM component loading coefficients predicted the ADOS communication subscore in ASD. These findings provide evidence of a link between brain function and structure, yielding new insights into the neural mechanisms of ASD.
期刊介绍:
Brain Imaging and Behavior is a bi-monthly, peer-reviewed journal, that publishes clinically relevant research using neuroimaging approaches to enhance our understanding of disorders of higher brain function. The journal is targeted at clinicians and researchers in fields concerned with human brain-behavior relationships, such as neuropsychology, psychiatry, neurology, neurosurgery, rehabilitation, and cognitive neuroscience.