How the Kinetic Balance Between Charge-Transfer and Mass-Transfer Influences Zinc Anode Stability: An Ultramicroelectrode Study.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ashutosh Rana, Md Arif Faisal, Kingshuk Roy, James H Nguyen, Saptarshi Paul, Jeffrey E Dick
{"title":"How the Kinetic Balance Between Charge-Transfer and Mass-Transfer Influences Zinc Anode Stability: An Ultramicroelectrode Study.","authors":"Ashutosh Rana, Md Arif Faisal, Kingshuk Roy, James H Nguyen, Saptarshi Paul, Jeffrey E Dick","doi":"10.1002/smtd.202401021","DOIUrl":null,"url":null,"abstract":"<p><p>Aqueous zinc-metal batteries (AZMBs) represent a promising frontier in battery technology, offering sustainable and safe alternatives to traditional non-aqueous batteries. Despite their potential, understanding the kinetics of zinc electrodeposition-a critical factor in AZMB performance-remains underexplored. Utilizing voltammetry on ultramicroelectrodes, we investigate how scan rate influences key processes of nucleation and growth during Zn<sup>2+</sup> electrodeposition. The findings highlight the efficacy of the Butler-Volmer formulation in capturing electron-transfer kinetics, contrasting with complex electron transfer kinetic models used for non-aqueous battery chemistries. We clearly demonstrate that there is a strong dependence of scan rate on the measured value of kinetic parameters (exchange current). To accurately probe the charge transfer kinetics, it is essential to apply fast scan voltammetry to decouple the influence of mass transfer, ensuring that the measured current is independent of the scan rate. Furthermore, by studying a model electrolyte additive, the intricate balance between charge transfer and mass transfer dynamics is unveiled, and this information is crucial for enhancing the stability of zinc metal anodes. These insights pave the way for developing advanced electrolyte and current collector formulations, promising enhanced cyclability and sustainability in zinc metal batteries.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401021"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401021","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc-metal batteries (AZMBs) represent a promising frontier in battery technology, offering sustainable and safe alternatives to traditional non-aqueous batteries. Despite their potential, understanding the kinetics of zinc electrodeposition-a critical factor in AZMB performance-remains underexplored. Utilizing voltammetry on ultramicroelectrodes, we investigate how scan rate influences key processes of nucleation and growth during Zn2+ electrodeposition. The findings highlight the efficacy of the Butler-Volmer formulation in capturing electron-transfer kinetics, contrasting with complex electron transfer kinetic models used for non-aqueous battery chemistries. We clearly demonstrate that there is a strong dependence of scan rate on the measured value of kinetic parameters (exchange current). To accurately probe the charge transfer kinetics, it is essential to apply fast scan voltammetry to decouple the influence of mass transfer, ensuring that the measured current is independent of the scan rate. Furthermore, by studying a model electrolyte additive, the intricate balance between charge transfer and mass transfer dynamics is unveiled, and this information is crucial for enhancing the stability of zinc metal anodes. These insights pave the way for developing advanced electrolyte and current collector formulations, promising enhanced cyclability and sustainability in zinc metal batteries.

电荷转移和质量转移之间的动力学平衡如何影响锌阳极的稳定性:超微电极研究。
锌金属水溶液电池(AZMB)是电池技术中前景广阔的前沿领域,为传统的非水溶液电池提供了可持续和安全的替代品。尽管其潜力巨大,但对锌电沉积动力学--AZMB 性能的关键因素--的了解仍然不足。利用超微电极上的伏安法,我们研究了扫描速率如何影响 Zn2+ 电沉积过程中成核和生长的关键过程。研究结果凸显了巴特勒-沃尔默公式在捕捉电子转移动力学方面的功效,这与非水电池化学中使用的复杂电子转移动力学模型形成了鲜明对比。我们清楚地证明,扫描速率与动力学参数(交换电流)的测量值有很大关系。为了准确探测电荷转移动力学,必须采用快速扫描伏安法来消除质量转移的影响,确保测量的电流与扫描速率无关。此外,通过对电解质添加剂模型的研究,揭示了电荷转移和质量转移动力学之间错综复杂的平衡关系,这些信息对于提高锌金属阳极的稳定性至关重要。这些见解为开发先进的电解质和集流剂配方铺平了道路,有望提高锌金属电池的循环性和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信