{"title":"Metagenomic analysis reveals houseflies as indicators for monitoring environmental antibiotic resistance genes","authors":"Yuhan Yang, Ping Xu, Wei He, Fei Tao","doi":"10.1111/1758-2229.70032","DOIUrl":null,"url":null,"abstract":"<p>Given the threat to public health posed by antibiotic resistance transmission, environmental monitoring is essential for tracking antibiotic resistance genes (ARGs). Houseflies, being ubiquitous organisms capable of carrying and disseminating ARGs, serve as suitable indicators for environmental monitoring. In this study, we employ metagenomic approaches to investigate housefly body surface samples from five typical sites associated with human activities. The investigation reveals microbiome diversity among the samples, along with variations in the occurrence and mobility potential of ARGs. Metagenomic analysis indicates that the composition of ARGs on housefly body surfaces is influenced by environmental ARGs, which may be enriched on the housefly body surface. The resistance genes related to multidrug, <i>β</i>-lactam, bacitracin, and tetracycline were the predominant ARGs detected, with multidrug-related ARGs consistently exhibiting dominance. Furthermore, the abundance of ARGs in the different housefly body surface samples was found to correlate with the population density and mobility of the sampling site. Natural environments exhibited the lowest ARG abundance, while areas with higher population density and limited population mobility displayed higher ARG abundance. This study emphasizes the effectiveness of houseflies as monitors for environmental ARGs and underscores their potential for assessing and controlling antibiotic resistance risks in urban environments.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 6","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576324/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70032","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Given the threat to public health posed by antibiotic resistance transmission, environmental monitoring is essential for tracking antibiotic resistance genes (ARGs). Houseflies, being ubiquitous organisms capable of carrying and disseminating ARGs, serve as suitable indicators for environmental monitoring. In this study, we employ metagenomic approaches to investigate housefly body surface samples from five typical sites associated with human activities. The investigation reveals microbiome diversity among the samples, along with variations in the occurrence and mobility potential of ARGs. Metagenomic analysis indicates that the composition of ARGs on housefly body surfaces is influenced by environmental ARGs, which may be enriched on the housefly body surface. The resistance genes related to multidrug, β-lactam, bacitracin, and tetracycline were the predominant ARGs detected, with multidrug-related ARGs consistently exhibiting dominance. Furthermore, the abundance of ARGs in the different housefly body surface samples was found to correlate with the population density and mobility of the sampling site. Natural environments exhibited the lowest ARG abundance, while areas with higher population density and limited population mobility displayed higher ARG abundance. This study emphasizes the effectiveness of houseflies as monitors for environmental ARGs and underscores their potential for assessing and controlling antibiotic resistance risks in urban environments.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.