Lotta A I Landor, Jesslyn Tjendra, Karen Erstad, Anders K Krabberød, Joachim P Töpper, Selina Våge
{"title":"At what cost? The impact of bacteriophage resistance on the growth kinetics and protein synthesis of Escherichia coli.","authors":"Lotta A I Landor, Jesslyn Tjendra, Karen Erstad, Anders K Krabberød, Joachim P Töpper, Selina Våge","doi":"10.1111/1758-2229.70046","DOIUrl":null,"url":null,"abstract":"<p><p>Cost of bacteriophage resistance (COR) is important in explaining processes of diversification and coexistence in microbial communities. COR can be expressed in different traits, and the lack of universally applicable methods to measure fitness trade-offs makes COR challenging to study. Due to its fundamental role in growth, we explored protein synthesis as a target for quantifying COR. In this study, the growth kinetics of three genome-sequenced strains of phage-resistant Escherichia coli, along with the phage-susceptible wild-type, were characterized over a range of glucose concentrations. Bioorthogonal non-canonical amino acid tagging (BONCAT) was used to track differences in protein synthetic activity between the wild-type and phage-resistant E. coli. Two of the resistant strains, with different levels of phage susceptibility, showed mucoid phenotypes corresponding with mutations in genes associated with the Rcs phosphorelay. These mucoid isolates, however, had reduced growth rates and potentially lower protein synthetic activity. Another resistant isolate with a different mutational profile maintained the same growth rate as the wild-type and showed increased BONCAT fluorescence, but its yield was lower. Together, these findings present different patterns of trade-offs resulting from the phage-induced mutations and demonstrate the potential applicability of BONCAT as a tool for measuring COR.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 6","pages":"e70046"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1758-2229.70046","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cost of bacteriophage resistance (COR) is important in explaining processes of diversification and coexistence in microbial communities. COR can be expressed in different traits, and the lack of universally applicable methods to measure fitness trade-offs makes COR challenging to study. Due to its fundamental role in growth, we explored protein synthesis as a target for quantifying COR. In this study, the growth kinetics of three genome-sequenced strains of phage-resistant Escherichia coli, along with the phage-susceptible wild-type, were characterized over a range of glucose concentrations. Bioorthogonal non-canonical amino acid tagging (BONCAT) was used to track differences in protein synthetic activity between the wild-type and phage-resistant E. coli. Two of the resistant strains, with different levels of phage susceptibility, showed mucoid phenotypes corresponding with mutations in genes associated with the Rcs phosphorelay. These mucoid isolates, however, had reduced growth rates and potentially lower protein synthetic activity. Another resistant isolate with a different mutational profile maintained the same growth rate as the wild-type and showed increased BONCAT fluorescence, but its yield was lower. Together, these findings present different patterns of trade-offs resulting from the phage-induced mutations and demonstrate the potential applicability of BONCAT as a tool for measuring COR.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.