Microstructural Evolution, Precipitation Behavior, and Mechanical Property Response of Cast Al–Li–Cu–Cd–Mn–Zr–Ti Alloy

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lixiong Shao, Xinyuan Jin, Xianfeng Li, Yaqi Deng, Zhiyong Gao, Haowei Wang
{"title":"Microstructural Evolution, Precipitation Behavior, and Mechanical Property Response of Cast Al–Li–Cu–Cd–Mn–Zr–Ti Alloy","authors":"Lixiong Shao,&nbsp;Xinyuan Jin,&nbsp;Xianfeng Li,&nbsp;Yaqi Deng,&nbsp;Zhiyong Gao,&nbsp;Haowei Wang","doi":"10.1002/adem.202401475","DOIUrl":null,"url":null,"abstract":"<p>\nThe microstructural evolution and mechanical properties of cast Al–Li–Cu–Cd–Mn–Zr–Ti alloy during heat treatment are investigated systematically. In these findings, it is shown that the as-cast alloy exhibits fine and equiaxed grains. During the solid solution treatment, Al<sub>20</sub>Cu<sub>2</sub>Mn<sub>3</sub> dispersoids effectively restrict grain growth, and reducing the solid solution time has a similar effect. Subsequently, the precipitation behavior and its effect on the mechanical properties during the aging process are revealed. Al<sub>3</sub>(Ti, Zr) particles are uniformly distributed throughout the matrix, acting as nucleation sites for δ′, θ′, and T<sub>1</sub> precipitates. Overtime, δ′ precipitates gradually coarsen and decrease in number, and some δ′ precipitates attach to Al<sub>3</sub>(Ti, Zr) particles, forming core–shell Al<sub>3</sub>(Li, Ti, Zr) phases. At the same time, plate-shaped θ′ and T<sub>1</sub> precipitates emerge and coarsen. After aging at 160 °C for 24 h, the alloy exhibits an excellent combination of strength (yield strength =293.3 ± 4 MPa, ultimate tensile strength =468.0 ± 3 MPa) and ductility (elongation =9.6 ± 0.4%), surpassing those reported in other cast Al–3Li–2Cu–<i>X</i> alloys. Critically, the underlying mechanisms behind the microstructure and mechanical properties are discussed extensively, providing valuable insights for the advancement of cast Al–Li alloys.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 22","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401475","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The microstructural evolution and mechanical properties of cast Al–Li–Cu–Cd–Mn–Zr–Ti alloy during heat treatment are investigated systematically. In these findings, it is shown that the as-cast alloy exhibits fine and equiaxed grains. During the solid solution treatment, Al20Cu2Mn3 dispersoids effectively restrict grain growth, and reducing the solid solution time has a similar effect. Subsequently, the precipitation behavior and its effect on the mechanical properties during the aging process are revealed. Al3(Ti, Zr) particles are uniformly distributed throughout the matrix, acting as nucleation sites for δ′, θ′, and T1 precipitates. Overtime, δ′ precipitates gradually coarsen and decrease in number, and some δ′ precipitates attach to Al3(Ti, Zr) particles, forming core–shell Al3(Li, Ti, Zr) phases. At the same time, plate-shaped θ′ and T1 precipitates emerge and coarsen. After aging at 160 °C for 24 h, the alloy exhibits an excellent combination of strength (yield strength =293.3 ± 4 MPa, ultimate tensile strength =468.0 ± 3 MPa) and ductility (elongation =9.6 ± 0.4%), surpassing those reported in other cast Al–3Li–2Cu–X alloys. Critically, the underlying mechanisms behind the microstructure and mechanical properties are discussed extensively, providing valuable insights for the advancement of cast Al–Li alloys.

Abstract Image

铸造 Ali-Li-Cu-Cd-Mn-Zr-Ti 合金的微结构演变、沉淀行为和机械性能响应
系统研究了铸造铝锂铜镉锰锌钛合金在热处理过程中的微观结构演变和机械性能。研究结果表明,铸造合金呈现出细小的等轴晶粒。在固溶处理过程中,Al20Cu2Mn3 分散体有效地限制了晶粒的生长,缩短固溶时间也有类似的效果。随后,揭示了老化过程中的析出行为及其对机械性能的影响。Al3(Ti,Zr)颗粒均匀地分布在整个基体中,成为δ′、θ′和 T1 沉淀的成核点。随着时间的推移,δ′沉淀物逐渐变粗,数量逐渐减少,一些δ′沉淀物附着在 Al3(Ti,Zr)颗粒上,形成核壳 Al3(Li,Ti,Zr)相。同时,板状的 θ′ 和 T1 沉淀出现并变粗。在 160 ℃ 下时效 24 小时后,该合金显示出优异的强度(屈服强度 =293.3 ± 4 MPa,极限抗拉强度 =468.0 ± 3 MPa)和延展性(伸长率 =9.6 ± 0.4%),超过了其他铸造 Al-3Li-2Cu-X 合金。重要的是,该研究广泛讨论了微观结构和机械性能背后的潜在机理,为铸铝锂合金的发展提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信