Ex Situ Electro-Organic Synthesis – A Method for Unrestricted Reaction Control and New Options for Paired Electrolysis

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Helena Pletsch, Yang Lyu, Dominik P. Halter
{"title":"Ex Situ Electro-Organic Synthesis – A Method for Unrestricted Reaction Control and New Options for Paired Electrolysis","authors":"Helena Pletsch,&nbsp;Yang Lyu,&nbsp;Dominik P. Halter","doi":"10.1002/celc.202400489","DOIUrl":null,"url":null,"abstract":"<p>Classic <i>in situ</i> electro-organic synthesis with substrates in an electrolyzer must compromise process conditions to balance electro- and thermochemical steps at both electrodes. This often restricts efficiency and product selectivity, since requirements may deviate for electrochemical (catalyst activation) and chemical (organic synthesis) steps, as well as for paired anode- and cathode reactions. Breaking this barrier, we report <i>ex situ</i> electro-organic synthesis as a versatile method that enables unique product selectivity and unusual product pairs. We exemplify the concept for pairing H<sub>2</sub> evolution (HER) with anodic alcohol oxidation. The two-step method accomplishes this by separating cathode reactions from organic substrate oxidation, and anodic electrocatalyst activation from chemical conversion of organic substrates in time and space. First, the electro-oxidation of Ni(OH)<sub>2</sub> anodes to NiOOH is paired with H<sub>2</sub> production by alkaline water electrolysis. Then, “charged” NiOOH electrodes are removed from the electrolyzer and used in external vessels to oxidize model substrate benzyl alcohol under regeneration of Ni(OH)<sub>2</sub>. Free choice of reaction media outside the electrolyzer allows to selectively obtain benzoic acid (in water) or benzaldehyde (in <i>n</i>-hexane), whereas classic <i>in situ</i> electrosynthesis only produces the acid together with H<sub>2</sub>. Perspectively, the method enables electrosynthesis of previously inaccessible products paired to H<sub>2</sub> generation.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 22","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400489","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400489","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Classic in situ electro-organic synthesis with substrates in an electrolyzer must compromise process conditions to balance electro- and thermochemical steps at both electrodes. This often restricts efficiency and product selectivity, since requirements may deviate for electrochemical (catalyst activation) and chemical (organic synthesis) steps, as well as for paired anode- and cathode reactions. Breaking this barrier, we report ex situ electro-organic synthesis as a versatile method that enables unique product selectivity and unusual product pairs. We exemplify the concept for pairing H2 evolution (HER) with anodic alcohol oxidation. The two-step method accomplishes this by separating cathode reactions from organic substrate oxidation, and anodic electrocatalyst activation from chemical conversion of organic substrates in time and space. First, the electro-oxidation of Ni(OH)2 anodes to NiOOH is paired with H2 production by alkaline water electrolysis. Then, “charged” NiOOH electrodes are removed from the electrolyzer and used in external vessels to oxidize model substrate benzyl alcohol under regeneration of Ni(OH)2. Free choice of reaction media outside the electrolyzer allows to selectively obtain benzoic acid (in water) or benzaldehyde (in n-hexane), whereas classic in situ electrosynthesis only produces the acid together with H2. Perspectively, the method enables electrosynthesis of previously inaccessible products paired to H2 generation.

原位电有机合成--不受限制的反应控制方法和配对电解的新选择
利用电解槽中的基质进行传统的原位电有机合成时,必须对工艺条件进行折衷,以平衡两个电极上的电化学和热化学步骤。这通常会限制效率和产品选择性,因为电化学(催化剂活化)和化学(有机合成)步骤以及成对的阳极和阴极反应的要求可能不同。我们的报告打破了这一障碍,将原位电有机合成作为一种多功能方法,实现了独特的产品选择性和不寻常的产品对。我们举例说明了将 H2 演化(HER)与阳极醇氧化配对的概念。这种两步法在时间和空间上将阴极反应从有机底物氧化中分离出来,并将阳极电催化剂活化从有机底物的化学转化中分离出来,从而实现了这一目的。首先,将 Ni(OH)2 阳极电氧化成 NiOOH 与碱性水电解产生 H2 配对。然后,从电解槽中取出 "带电 "的 NiOOH 电极,在外部容器中使用,在 Ni(OH)2 的再生作用下氧化模型底物苯甲醇。通过自由选择电解槽外的反应介质,可以选择性地获得苯甲酸(在水中)或苯甲醛(在正己烷中),而传统的原位电合成只能产生酸和 H2。从长远来看,这种方法可以电合成以前无法获得的与 H2 生成配对的产物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信