Ensemble Feature Selection for Clustering Damage Modes in Carbon Fiber-Reinforced Polymer Sandwich Composites Using Acoustic Emission

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Abdulkadir Gulsen, Burak Kolukisa, Umut Caliskan, Burcu Bakir-Gungor, Vehbi Cagri Gungor
{"title":"Ensemble Feature Selection for Clustering Damage Modes in Carbon Fiber-Reinforced Polymer Sandwich Composites Using Acoustic Emission","authors":"Abdulkadir Gulsen,&nbsp;Burak Kolukisa,&nbsp;Umut Caliskan,&nbsp;Burcu Bakir-Gungor,&nbsp;Vehbi Cagri Gungor","doi":"10.1002/adem.202470063","DOIUrl":null,"url":null,"abstract":"<p><b>Acoustic Emission</b>\n </p><p>In article number 2400317, Abdulkadir Gulsen and co-workers present a novel ensemble feature selection methodology to rank features relevant to damage modes on AE signals in CFRP sandwich composites. Subsequently, ranked features are utilized in unsupervised clustering models to identify damage modes. The comparative results demonstrate that, in addition to the commonly used features, other features, like partial powers, have a robust correlation with damage modes.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 22","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202470063","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202470063","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Acoustic Emission

In article number 2400317, Abdulkadir Gulsen and co-workers present a novel ensemble feature selection methodology to rank features relevant to damage modes on AE signals in CFRP sandwich composites. Subsequently, ranked features are utilized in unsupervised clustering models to identify damage modes. The comparative results demonstrate that, in addition to the commonly used features, other features, like partial powers, have a robust correlation with damage modes.

利用声发射对碳纤维增强聚合物夹层复合材料中的损伤模式进行聚类的集合特征选择
声发射 在编号为 2400317 的文章中,Abdulkadir Gulsen 及其合作者介绍了一种新颖的集合特征选择方法,用于对 CFRP 夹层复合材料 AE 信号中与损伤模式相关的特征进行排序。随后,在无监督聚类模型中利用排序的特征来识别损伤模式。比较结果表明,除常用特征外,其他特征(如部分幂)与损伤模式也有很强的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信