Optimizing decentralized implementation of state estimation in active distribution networks

IF 2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Mohammad Gholami, Aref Eskandari, Sajjad Fattaheian-Dehkordi, Matti Lehtonen
{"title":"Optimizing decentralized implementation of state estimation in active distribution networks","authors":"Mohammad Gholami,&nbsp;Aref Eskandari,&nbsp;Sajjad Fattaheian-Dehkordi,&nbsp;Matti Lehtonen","doi":"10.1049/gtd2.13296","DOIUrl":null,"url":null,"abstract":"<p>The challenges facing active distribution networks have highlighted the position of the distribution system state estimation (DSSE) process in the distribution management systems as its most important function. Here, regarding the extensive scale of distribution networks and the weaknesses of centralized methods, the decentralized implementation of the DSSE process has received considerable attention. However, predefined network partitioning is supposed in previous works and zone size effects on the performance of the DSSE process have not been assessed. In response, a method for finding the optimal number of network zones and their size is proposed here. For this purpose, initially, an algorithm is used to partition the network into all possible configurations with different sizes. Subsequently, performance metrics affected by zone sizes, such as execution time, accuracy of the DSSE results, and reliability in achieving the results at the control centre, are modelled. Finally, by applying the decentralized DSSE method across all partitioning scenarios and calculating performance metrics, the most efficient and cost-effective partitioning scenario can be identified. The performance of the proposed method is evaluated using the modified 77-bus UK distribution network as an active test case, and the findings are subsequently presented and analysed.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 21","pages":"3538-3553"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13296","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13296","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The challenges facing active distribution networks have highlighted the position of the distribution system state estimation (DSSE) process in the distribution management systems as its most important function. Here, regarding the extensive scale of distribution networks and the weaknesses of centralized methods, the decentralized implementation of the DSSE process has received considerable attention. However, predefined network partitioning is supposed in previous works and zone size effects on the performance of the DSSE process have not been assessed. In response, a method for finding the optimal number of network zones and their size is proposed here. For this purpose, initially, an algorithm is used to partition the network into all possible configurations with different sizes. Subsequently, performance metrics affected by zone sizes, such as execution time, accuracy of the DSSE results, and reliability in achieving the results at the control centre, are modelled. Finally, by applying the decentralized DSSE method across all partitioning scenarios and calculating performance metrics, the most efficient and cost-effective partitioning scenario can be identified. The performance of the proposed method is evaluated using the modified 77-bus UK distribution network as an active test case, and the findings are subsequently presented and analysed.

Abstract Image

优化主动配电网络中状态估计的分散实施
主动配电网络所面临的挑战凸显了配电系统状态估算(DSSE)过程在配电管理系统中的重要地位。由于配电网络规模庞大,且集中式方法存在缺陷,因此分散式实施 DSSE 流程受到了广泛关注。然而,在以往的研究中,网络分区都是预定义的,而且尚未评估分区大小对 DSSE 流程性能的影响。为此,本文提出了一种寻找最佳网络分区数量及其大小的方法。为此,首先使用一种算法将网络划分为不同大小的所有可能配置。随后,模拟受区域大小影响的性能指标,如执行时间、DSSE 结果的准确性以及在控制中心实现结果的可靠性。最后,通过在所有分区方案中应用分散式 DSSE 方法并计算性能指标,可以确定最高效、最具成本效益的分区方案。以英国 77 总线配电网络为主动测试案例,对所提出方法的性能进行了评估,随后对评估结果进行了介绍和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信