Reactivity Profiling for High-Yielding Ynamine-Tagged Oligonucleotide Click Chemistry Bioconjugations

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Frederik Peschke, Andrea Taladriz-Sender, Allan J.B. Watson* and Glenn A. Burley*, 
{"title":"Reactivity Profiling for High-Yielding Ynamine-Tagged Oligonucleotide Click Chemistry Bioconjugations","authors":"Frederik Peschke,&nbsp;Andrea Taladriz-Sender,&nbsp;Allan J.B. Watson* and Glenn A. Burley*,&nbsp;","doi":"10.1021/acs.bioconjchem.4c0035310.1021/acs.bioconjchem.4c00353","DOIUrl":null,"url":null,"abstract":"<p >The Cu-catalyzed azide–alkyne cycloaddition (CuAAC) reaction is a key ligation tool used to prepare bioconjugates. Despite the widespread utility of CuAAC to produce discrete 1,4-triazole products, the requirement of a Cu catalyst can result in oxidative damage to these products. Ynamines are superior reactive groups in CuAAC reactions and require lower Cu loadings to produce 1,4-triazole products. This study discloses a strategy to identify optimal reaction conditions for the formation of oligodeoxyribonucleotide (ODN) bioconjugates. First, the surveying of reaction conditions identified that the ratio of Cu to the choice of reductant (i.e., either sodium ascorbate or glutathione) influences the reaction kinetics and the rate of degradation of bioconjugate products. Second, optimized conditions were used to prepare a variety of ODN-tagged products and ODN-protein conjugates and compared to conventional CuAAC and Cu-free azide–alkyne (3 + 2)cycloadditions (SPAAC), with ynamine-based examples being faster in all cases. The reaction optimization platform established in this study provides the basis for its wider utility to prepare CuAAC-based bioconjugates with lower Cu loadings while maintaining fast reaction kinetics.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":"35 11","pages":"1788–1796 1788–1796"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.bioconjchem.4c00353","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry Bioconjugate","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.bioconjchem.4c00353","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The Cu-catalyzed azide–alkyne cycloaddition (CuAAC) reaction is a key ligation tool used to prepare bioconjugates. Despite the widespread utility of CuAAC to produce discrete 1,4-triazole products, the requirement of a Cu catalyst can result in oxidative damage to these products. Ynamines are superior reactive groups in CuAAC reactions and require lower Cu loadings to produce 1,4-triazole products. This study discloses a strategy to identify optimal reaction conditions for the formation of oligodeoxyribonucleotide (ODN) bioconjugates. First, the surveying of reaction conditions identified that the ratio of Cu to the choice of reductant (i.e., either sodium ascorbate or glutathione) influences the reaction kinetics and the rate of degradation of bioconjugate products. Second, optimized conditions were used to prepare a variety of ODN-tagged products and ODN-protein conjugates and compared to conventional CuAAC and Cu-free azide–alkyne (3 + 2)cycloadditions (SPAAC), with ynamine-based examples being faster in all cases. The reaction optimization platform established in this study provides the basis for its wider utility to prepare CuAAC-based bioconjugates with lower Cu loadings while maintaining fast reaction kinetics.

高产的亚硝胺标记寡核苷酸点击化学生物标记的反应性分析
铜催化的叠氮-炔环加成反应(CuAAC)是制备生物共轭物的关键连接工具。尽管 CuAAC 广泛用于生产离散的 1,4-三唑产物,但由于需要使用铜催化剂,因此会对这些产物造成氧化损伤。在 CuAAC 反应中,Ynamines 是较好的反应基团,需要较低的 Cu 负载来生产 1,4-三唑产品。本研究揭示了一种确定形成寡脱氧核苷酸(ODN)生物共轭物最佳反应条件的策略。首先,通过对反应条件的调查发现,Cu 的比例和还原剂(即抗坏血酸钠或谷胱甘肽)的选择会影响反应动力学和生物共轭产物的降解率。其次,利用优化条件制备了多种 ODN 标记产品和 ODN 蛋白共轭物,并与传统的 CuAAC 和无铜叠氮-炔(3 + 2)环加成(SPAAC)进行了比较,结果表明在所有情况下,基于亚硝胺的例子都更快。本研究建立的反应优化平台为其在制备基于 CuAAC 的生物共轭物方面的广泛应用奠定了基础,该平台可在保持快速反应动力学的同时降低铜负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信