Yuxin Wang, Zhiqi Jiang, Chunguang Chu, Zhen Zhang, Jiang Wang, Dianyou Li, Naying He, Chris Fietkiewicz, Changsong Zhou, Marcus Kaiser, Xuze Bai, Chencheng Zhang, Chen Liu
{"title":"Push-pull effects of basal ganglia network in Parkinson’s disease inferred by functional MRI","authors":"Yuxin Wang, Zhiqi Jiang, Chunguang Chu, Zhen Zhang, Jiang Wang, Dianyou Li, Naying He, Chris Fietkiewicz, Changsong Zhou, Marcus Kaiser, Xuze Bai, Chencheng Zhang, Chen Liu","doi":"10.1038/s41531-024-00835-7","DOIUrl":null,"url":null,"abstract":"<p>Deep brain stimulation (DBS) can ameliorate motor symptoms in Parkinson’s disease (PD), but its mechanism remains unclear. This work constructs a multi-scale brain model using the fMRI data from 27 PD patients with subthalamic DBS and 30 healthy controls. The model fits microscopic coupling parameters in the cortico-basal ganglia-thalamic neural loop to match individual connectivity, finding the “push-pull” effect of basal ganglia network. Specifically, increased GABAergic projection into the thalamus from basal ganglia worsens rigidity, while reduced GABAergic projection within the cortex exacerbates bradykinesia, suggesting that the dopamine deficiency induces the chain coupling variations to “push” the network to an abnormal state. Conversely, DBS can alleviate rigidity by enhancing GABAergic projections within the basal ganglia, and improve bradykinesia by reducing cortical projections to basal ganglia, exhibiting that DBS “pulls” the network to a healthy state. This work combines the microscopic and macroscopic neural information for understanding PD and its treatment.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"23 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-024-00835-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Deep brain stimulation (DBS) can ameliorate motor symptoms in Parkinson’s disease (PD), but its mechanism remains unclear. This work constructs a multi-scale brain model using the fMRI data from 27 PD patients with subthalamic DBS and 30 healthy controls. The model fits microscopic coupling parameters in the cortico-basal ganglia-thalamic neural loop to match individual connectivity, finding the “push-pull” effect of basal ganglia network. Specifically, increased GABAergic projection into the thalamus from basal ganglia worsens rigidity, while reduced GABAergic projection within the cortex exacerbates bradykinesia, suggesting that the dopamine deficiency induces the chain coupling variations to “push” the network to an abnormal state. Conversely, DBS can alleviate rigidity by enhancing GABAergic projections within the basal ganglia, and improve bradykinesia by reducing cortical projections to basal ganglia, exhibiting that DBS “pulls” the network to a healthy state. This work combines the microscopic and macroscopic neural information for understanding PD and its treatment.
期刊介绍:
npj Parkinson's Disease is a comprehensive open access journal that covers a wide range of research areas related to Parkinson's disease. It publishes original studies in basic science, translational research, and clinical investigations. The journal is dedicated to advancing our understanding of Parkinson's disease by exploring various aspects such as anatomy, etiology, genetics, cellular and molecular physiology, neurophysiology, epidemiology, and therapeutic development. By providing free and immediate access to the scientific and Parkinson's disease community, npj Parkinson's Disease promotes collaboration and knowledge sharing among researchers and healthcare professionals.