Hubbard Gap Closure-Induced Dual-Redox Li-Storage Mechanism as the Origin of Anomalously High Capacity and Fast Ion Diffusivity in MOFs-Like Polyoxometalates

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xinran Wang, Songjie Li, Feng Wu, Hailong Chen, Wenxing Chen, Wenbin Zhao, Kaidi Kang, Ruiqi Guo, Yuheng Sun, Liqing Zhai, Ran Zhao, Aolei Gao, Chuan Wu, Ying Bai
{"title":"Hubbard Gap Closure-Induced Dual-Redox Li-Storage Mechanism as the Origin of Anomalously High Capacity and Fast Ion Diffusivity in MOFs-Like Polyoxometalates","authors":"Xinran Wang, Songjie Li, Feng Wu, Hailong Chen, Wenxing Chen, Wenbin Zhao, Kaidi Kang, Ruiqi Guo, Yuheng Sun, Liqing Zhai, Ran Zhao, Aolei Gao, Chuan Wu, Ying Bai","doi":"10.1002/anie.202416735","DOIUrl":null,"url":null,"abstract":"MOFs-like polyoxometalate (POMs) electrodes have already emerged as promising candidates for lithium-ion batteries (LIBs), yet the origins of the underlying redox mechanism in such materials remain a matter of uncertainty. Of critical challenges are the anomalously high storage capacities beyond their theoretical values and the fast ion diffusivity that cannot be satisfactorily comprehended in the theory of crystal lattice. Herein, for the first time we decode t2g electron occupation-regulated dual-redox Li-storage mechanism as the true origin of extra capacity in POMs electrodes. Enhanced V-t2g orbital occupation by Li coordination significantly triggers the Hubbard gap closure and reversible Li deposition/dissolution at surface region. Conjugated V-O-Li configuration at interlayers endow Li+ ion pathways along pore walls as the dominant contribution to the low migration barrier and fast diffusivity. As a result, remarkable cycle stability (~100 % capacity retention after 2000 cycles at 1 A g−1), extremely high specific capacity (1200 mAh g−1 at 100 mA g−1) and excellent rate performance (404 mAh g−1 at 8 A g−1) were achieved, providing new understandings on the underlying mechanism of POMs electrodes and pivotal guidance for dual-storage materials.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"12 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202416735","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

MOFs-like polyoxometalate (POMs) electrodes have already emerged as promising candidates for lithium-ion batteries (LIBs), yet the origins of the underlying redox mechanism in such materials remain a matter of uncertainty. Of critical challenges are the anomalously high storage capacities beyond their theoretical values and the fast ion diffusivity that cannot be satisfactorily comprehended in the theory of crystal lattice. Herein, for the first time we decode t2g electron occupation-regulated dual-redox Li-storage mechanism as the true origin of extra capacity in POMs electrodes. Enhanced V-t2g orbital occupation by Li coordination significantly triggers the Hubbard gap closure and reversible Li deposition/dissolution at surface region. Conjugated V-O-Li configuration at interlayers endow Li+ ion pathways along pore walls as the dominant contribution to the low migration barrier and fast diffusivity. As a result, remarkable cycle stability (~100 % capacity retention after 2000 cycles at 1 A g−1), extremely high specific capacity (1200 mAh g−1 at 100 mA g−1) and excellent rate performance (404 mAh g−1 at 8 A g−1) were achieved, providing new understandings on the underlying mechanism of POMs electrodes and pivotal guidance for dual-storage materials.
哈伯德间隙闭合诱导的双氧化还原锂存储机制是 MOFs 类聚氧化金属酸盐中异常高容量和快速离子扩散性的起源
MOFs 类聚氧化金属(POMs)电极已成为锂离子电池(LIBs)的理想候选材料,但这类材料的基本氧化还原机制的起源仍是一个不确定的问题。最关键的挑战是超出理论值的异常高存储容量,以及晶格理论无法令人满意地理解的快速离子扩散性。在此,我们首次解码了 t2g 电子占据调控的双氧化还原锂存储机制,这是 POMs 电极额外容量的真正来源。锂配位增强的 V-t2g 轨道占据极大地触发了哈伯德间隙的闭合以及锂在表面区域的可逆沉积/溶解。层间的共轭 V-O-Li 构型赋予 Li+ 离子沿着孔壁的通路,是低迁移障碍和快速扩散的主要原因。因此,该电极实现了卓越的循环稳定性(在 1 A g-1 条件下循环 2000 次后容量保持率约为 100%)、极高的比容量(在 100 mA g-1 条件下为 1200 mAh g-1)和优异的速率性能(在 8 A g-1 条件下为 404 mAh g-1),从而为 POMs 电极的基本机理提供了新的理解,并为双存储材料提供了重要指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信