Minghua Zhu , Zijun Xiao , Tao Zhang , Guanghua Lu
{"title":"Construction of interpretable ensemble learning models for predicting bioaccumulation parameters of organic chemicals in fish","authors":"Minghua Zhu , Zijun Xiao , Tao Zhang , Guanghua Lu","doi":"10.1016/j.jhazmat.2024.136606","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate prediction of bioaccumulation parameters is essential for assessing exposure, hazards, and risks of chemicals. However, the majority of prediction models on bioaccumulation parameters are individual models based on a single algorithm and lack model interpretation, resulting in unsatisfactory prediction accuracy due to inherent constraints of the algorithm and weak interpretability. Ensemble learning (EL) that combine multiple algorithms, coupled with SHapley Additive exPlanation (SHAP) method, may overcome the limitations. Herein, EL models were constructed for three bioaccumulation parameters using datasets covering 2496 chemicals. The EL models demonstrated superior prediction accuracy compared to both individual models developed in this study and those from previous research, achieving a coefficient of determination of up to 0.861 on the validation sets. Applicability domains were characterized using a structure-activity landscape-based (abbreviated as AD<sub>SAL</sub>) methodology. The optimal EL models, together with the AD<sub>SAL</sub>, were successfully used to predict bioaccumulation parameters for 4374 chemicals included in the Inventory of Existing Chemical Substances of China. Model interpretation using the SHAP method offered insight into key features influencing bioaccumulation potential, including hydrophobicity, water solubility, polarizability, ionization potential, weight, and volume of molecules. Overall, the study provides data and models to support the sound management and risk assessment of chemicals.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"482 ","pages":"Article 136606"},"PeriodicalIF":12.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030438942403187X","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate prediction of bioaccumulation parameters is essential for assessing exposure, hazards, and risks of chemicals. However, the majority of prediction models on bioaccumulation parameters are individual models based on a single algorithm and lack model interpretation, resulting in unsatisfactory prediction accuracy due to inherent constraints of the algorithm and weak interpretability. Ensemble learning (EL) that combine multiple algorithms, coupled with SHapley Additive exPlanation (SHAP) method, may overcome the limitations. Herein, EL models were constructed for three bioaccumulation parameters using datasets covering 2496 chemicals. The EL models demonstrated superior prediction accuracy compared to both individual models developed in this study and those from previous research, achieving a coefficient of determination of up to 0.861 on the validation sets. Applicability domains were characterized using a structure-activity landscape-based (abbreviated as ADSAL) methodology. The optimal EL models, together with the ADSAL, were successfully used to predict bioaccumulation parameters for 4374 chemicals included in the Inventory of Existing Chemical Substances of China. Model interpretation using the SHAP method offered insight into key features influencing bioaccumulation potential, including hydrophobicity, water solubility, polarizability, ionization potential, weight, and volume of molecules. Overall, the study provides data and models to support the sound management and risk assessment of chemicals.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.