{"title":"Highly Water-Stable 2D MOF as Dual Sensor for the Ultra-Sensitive Aqueous Phase Detection of Nitrofuran Antibiotics and Organochlorine Pesticides","authors":"Supriya Mondal, Rupam Sahoo, Madhab C. Das","doi":"10.1002/smll.202409095","DOIUrl":null,"url":null,"abstract":"Misuse of antibiotics and pesticides has led to hazardous effects on human health, livestock, agriculture, and aquaculture, which urges researchers to find simple, rapid, efficient, and cost-effective methods for quick on-site analysis of these organic pollutants with functional materials. Herein, a 2D chemically robust MOF: <b>IITKGP-71</b>, {[Cd(MBPz)(2,6-NDC)]·2H<sub>2</sub>O}<i><sub>n</sub></i> is strategically developed with ease in scalability and exploited as dual sensors toward the toxic antibiotic and pesticide detection via luminescence quenching in <i>aqueous medium</i>. The framework displays exceptional chemical robustness in water for 3 months, in an open atmosphere over 2 months, and wide range of aqueous pH solution (pH = 3–12) for a day. <b>IITKGP-71</b> can selectively quench the nitrofuran antibiotics (NFZ and NFT) and organochlorine pesticide DCN while remaining unaffected by other interfering antibiotics and pesticides, respectively. An excellent <i>trade-off</i> between high effectivity (high K<sub>sv</sub>) and high sensitivity (low LOD) was achieved for the targeted analytes. The easy scalability, high chemical stability, fast responsivity, multi-responsive nature, recyclability with outstanding structural stability made this framework viable in playing a crucial role in safeguarding aquatic ecosystems and public health from the hazardous effects of antibiotics and pesticides.","PeriodicalId":228,"journal":{"name":"Small","volume":"63 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202409095","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Misuse of antibiotics and pesticides has led to hazardous effects on human health, livestock, agriculture, and aquaculture, which urges researchers to find simple, rapid, efficient, and cost-effective methods for quick on-site analysis of these organic pollutants with functional materials. Herein, a 2D chemically robust MOF: IITKGP-71, {[Cd(MBPz)(2,6-NDC)]·2H2O}n is strategically developed with ease in scalability and exploited as dual sensors toward the toxic antibiotic and pesticide detection via luminescence quenching in aqueous medium. The framework displays exceptional chemical robustness in water for 3 months, in an open atmosphere over 2 months, and wide range of aqueous pH solution (pH = 3–12) for a day. IITKGP-71 can selectively quench the nitrofuran antibiotics (NFZ and NFT) and organochlorine pesticide DCN while remaining unaffected by other interfering antibiotics and pesticides, respectively. An excellent trade-off between high effectivity (high Ksv) and high sensitivity (low LOD) was achieved for the targeted analytes. The easy scalability, high chemical stability, fast responsivity, multi-responsive nature, recyclability with outstanding structural stability made this framework viable in playing a crucial role in safeguarding aquatic ecosystems and public health from the hazardous effects of antibiotics and pesticides.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.